3.2.1 Принцип локализации лица нейронной сетью: Для построения эффективного алгоритма локализации лица был проведен

Как работает нейронная сеть: алгоритмы, обучение, функции активации и потери

3.2.1 Принцип локализации лица нейронной сетью: Для построения эффективного алгоритма локализации лица был проведен

Нейронная сеть — попытка с помощью математических моделей воспроизвести работу человеческого мозга для создания машин, обладающих искусственным интеллектом.

Искусственная нейронная сеть обычно обучается с учителем. Это означает наличие обучающего набора (датасета), который содержит примеры с истинными значениями: тегами, классами, показателями.

Неразмеченные наборы также используют для обучения нейронных сетей, но мы не будем здесь это рассматривать.

Например, если вы хотите создать нейросеть для оценки тональности текста, датасетом будет список предложений с соответствующими каждому эмоциональными оценками.

Тональность текста определяют признаки (слова, фразы, структура предложения), которые придают негативную или позитивную окраску.

Веса признаков в итоговой оценке тональности текста (позитивный, негативный, нейтральный) зависят от математической функции, которая вычисляется во время обучения нейронной сети.

Раньше люди генерировали признаки вручную. Чем больше признаков и точнее подобраны веса, тем точнее ответ. Нейронная сеть автоматизировала этот процесс.

Искусственная нейронная сеть состоит из трех компонентов:

  • Входной слой;
  • Скрытые (вычислительные) слои;
  • Выходной слой.

Обучение нейросетей происходит в два этапа:

  • Прямое распространение ошибки;
  • Обратное распространение ошибки.

Во время прямого распространения ошибки делается предсказание ответа. При обратном распространении ошибка между фактическим ответом и предсказанным минимизируется.

Прямое распространение ошибки

Прямое распространение

Зададим начальные веса случайным образом:

Умножим входные данные на веса для формирования скрытого слоя:

  • h1 = (x1 * w1) + (x2 * w1)
  • h2 = (x1 * w2) + (x2 * w2)
  • h3 = (x1 * w3) + (x2 * w3)

Выходные данные из скрытого слоя передается через нелинейную функцию (функцию активации), для получения выхода сети:

Обратное распространение

  • Суммарная ошибка (total_error) вычисляется как разность между ожидаемым значением «y» (из обучающего набора) и полученным значением «y_» (посчитанное на этапе прямого распространения ошибки), проходящих через функцию потерь (cost function).
  • Частная производная ошибки вычисляется по каждому весу (эти частные дифференциалы отражают вклад каждого веса в общую ошибку (total_loss)).
  • Затем эти дифференциалы умножаются на число, называемое скорость обучения или learning rate (η).

Полученный результат затем вычитается из соответствующих весов.

В результате получатся следующие обновленные веса:

  • w1 = w1 — (η * ∂(err) / ∂(w1))
  • w2 = w2 — (η * ∂(err) / ∂(w2))
  • w3 = w3 — (η * ∂(err) / ∂(w3))

То, что мы предполагаем и инициализируем веса случайным образом, и они будут давать точные ответы, звучит не вполне обоснованно, тем не менее, работает хорошо.

Популярный мем о том, как Карлсон стал Data Science разработчиком

Если вы знакомы с рядами Тейлора, обратное распространение ошибки имеет такой же конечный результат. Только вместо бесконечного ряда мы пытаемся оптимизировать только его первый член.

Смещения – это веса, добавленные к скрытым слоям. Они тоже случайным образом инициализируются и обновляются так же, как скрытый слой. Роль скрытого слоя заключается в том, чтобы определить форму базовой функции в данных, в то время как роль смещения – сдвинуть найденную функцию в сторону так, чтобы она частично совпала с исходной функцией.

Частные производные

Частные производные можно вычислить, поэтому известно, какой был вклад в ошибку по каждому весу. Необходимость производных очевидна.

Представьте нейронную сеть, пытающуюся найти оптимальную скорость беспилотного автомобиля.

Eсли машина обнаружит, что она едет быстрее или медленнее требуемой скорости, нейронная сеть будет менять скорость, ускоряя или замедляя автомобиль. Что при этом ускоряется/замедляется? Производные скорости.

Разберем необходимость частных производных на примере.

Предположим, детей попросили бросить дротик в мишень, целясь в центр. Вот результаты:

Теперь, если мы найдем общую ошибку и просто вычтем ее из всех весов, мы обобщим ошибки, допущенные каждым. Итак, скажем, ребенок попал слишком низко, но мы просим всех детей стремиться попадать в цель, тогда это приведет к следующей картине:

Ошибка нескольких детей может уменьшиться, но общая ошибка все еще увеличивается.

Найдя частные производные, мы узнаем ошибки, соответствующие каждому весу в отдельности. Если выборочно исправить веса, можно получить следующее:

Гиперпараметры

Нейронная сеть используется для автоматизации отбора признаков, но некоторые параметры настраиваются вручную.

Скорость обучения (learning rate)

Скорость обучения является очень важным гиперпараметром. Если скорость обучения слишком мала, то даже после обучения нейронной сети в течение длительного времени она будет далека от оптимальных результатов. Результаты будут выглядеть примерно так:

С другой стороны, если скорость обучения слишком высока, то сеть очень быстро выдаст ответы. Получится следующее:

Функция активации (activation function)

Функция активации — это один из самых мощных инструментов, который влияет на силу, приписываемую нейронным сетям. Отчасти, она определяет, какие нейроны будут активированы, другими словами и какая информация будет передаваться последующим слоям.

Без функций активации глубокие сети теряют значительную часть своей способности к обучению. Нелинейность этих функций отвечает за повышение степени свободы, что позволяет обобщать проблемы высокой размерности в более низких измерениях. Ниже приведены примеры распространенных функций активации:

Функция потери (loss function)

Функция потерь находится в центре нейронной сети. Она используется для расчета ошибки между  реальными и полученными ответами. Наша глобальная цель — минимизировать эту ошибку. Таким образом, функция потерь эффективно приближает обучение нейронной сети к этой цели.

Функция потерь измеряет «насколько хороша» нейронная сеть в отношении данной обучающей выборки и ожидаемых ответов. Она также может зависеть от таких переменных, как веса и смещения.

Функция потерь одномерна и не является вектором, поскольку она оценивает, насколько хорошо нейронная сеть работает в целом.

Некоторые известные функции потерь:

  • Квадратичная (среднеквадратичное отклонение);
  • Кросс-энтропия;
  • Экспоненциальная (AdaBoost);
  • Расстояние Кульбака — Лейблера или прирост информации.

Cреднеквадратичное отклонение – самая простая фукция потерь и наиболее часто используемая. Она задается следующим образом:

Функция потерь в нейронной сети должна удовлетворять двум условиям:

  • Функция потерь должна быть записана как среднее;
  • Функция потерь не должна зависеть от каких-либо активационных значений нейронной сети, кроме значений, выдаваемых на выходе.

Глубокие нейронные сети

Глубокое обучение (deep learning) – это класс алгоритмов машинного обучения, которые учатся глубже (более абстрактно) понимать данные. Популярные алгоритмы нейронных сетей глубокого обучения представлены на схеме ниже.

Популярные алгоритмы нейронных сетей (http://www.asimovinstitute.org/neural-network-zoo)

Более формально в deep learning:

  • Используется каскад (пайплайн, как последовательно передаваемый поток) из множества обрабатывающих слоев (нелинейных) для извлечения и преобразования признаков;
  • Основывается на изучении признаков (представлении информации) в данных без обучения с учителем. Функции более высокого уровня (которые находятся в последних слоях) получаются из функций нижнего уровня (которые находятся в слоях начальных слоях);
  • Изучает многоуровневые представления, которые соответствуют разным уровням абстракции; уровни образуют иерархию представления.

Пример

Рассмотрим однослойную нейронную сеть:

Здесь, обучается первый слой (зеленые нейроны), он просто передается на выход.

В то время как в случае двухслойной нейронной сети, независимо от того, как обучается зеленый скрытый слой, он затем передается на синий скрытый слой, где продолжает обучаться:

Следовательно, чем больше число скрытых слоев, тем больше возможности обучения сети.

Не следует путать с широкой нейронной сетью.

В этом случае большое число нейронов в одном слое не приводит к глубокому пониманию данных. Но это приводит к изучению большего числа признаков.

Пример:

Изучая английскую грамматику, требуется знать огромное число понятий. В этом случае однослойная широкая нейронная сеть работает намного лучше, чем глубокая нейронная сеть, которая значительно меньше.

Но

В случае изучения преобразования Фурье, ученик (нейронная сеть) должен быть глубоким, потому что не так много понятий, которые нужно знать, но каждое из них достаточно сложное и требует глубокого понимания.

Главное — баланс

Очень заманчиво использовать глубокие и широкие нейронные сети для каждой задачи. Но это может быть плохой идеей, потому что:

  • Обе требуют значительно большего количества данных для обучения, чтобы достичь минимальной желаемой точности;
  • Обе имеют экспоненциальную сложность;
  • Слишком глубокая нейронная сеть попытается сломать фундаментальные представления, но при этом она будет делать ошибочные предположения и пытаться найти псевдо-зависимости, которые не существуют;
  • Слишком широкая нейронная сеть будет пытаться найти больше признаков, чем есть. Таким образом, подобно предыдущей, она начнет делать неправильные предположения о данных.

Проклятье размерности

Проклятие размерности относится к различным явлениям, возникающим при анализе и организации данных в многомерных пространствах (часто с сотнями или тысячами измерений), и не встречается в ситуациях с низкой размерностью.

Грамматика английского языка имеет огромное количество аттрибутов, влияющих на нее. В машинном обучении мы должны представить их признаками в виде массива/матрицы конечной и существенно меньшей длины (чем количество существующих признаков). Для этого сети обобщают эти признаки. Это порождает две проблемы:

  • Из-за неправильных предположений появляется смещение. Высокое смещение может привести к тому, что алгоритм пропустит существенную взаимосвязь между признаками и целевыми переменными. Это явление называют недообучение.
  • От небольших отклонений в обучающем множестве из-за недостаточного изучения признаков увеличивается дисперсия. Высокая дисперсия ведет к переобучению, ошибки воспринимаются в качестве надежной информации.

Компромисс

На ранней стадии обучения смещение велико, потому что выход из сети далек от желаемого. А дисперсия очень мала, поскольку данные имеет пока малое влияние.

В конце обучения смещение невелико, потому что сеть выявила основную функцию в данных. Однако, если обучение слишком продолжительное, сеть также изучит шум, характерный для этого набора данных. Это приводит к большому разбросу результатов при тестировании на разных множествах, поскольку шум меняется от одного набора данных к другому.

Действительно,

алгоритмы с большим смещением обычно в основе более простых моделей, которые не склонны к переобучению, но могут недообучиться и не выявить важные закономерности или свойства признаков.

Модели с маленьким смещением и большой дисперсией обычно более сложны с точки зрения их структуры, что позволяет им более точно представлять обучающий набор.

Однако они могут отображать много шума из обучающего набора, что делает их прогнозы менее точными, несмотря на их дополнительную сложность.

Следовательно, как правило, невозможно иметь маленькое смещение и маленькую дисперсию одновременно.

Сейчас есть множество инструментов, с помощью которых можно легко создать сложные модели машинного обучения, переобучение занимает центральное место. Поскольку смещение появляется, когда сеть не получает достаточно информации. Но чем больше примеров, тем больше появляется вариантов зависимостей и изменчивостей в этих корреляциях.

Источник: https://neurohive.io/ru/osnovy-data-science/osnovy-nejronnyh-setej-algoritmy-obuchenie-funkcii-aktivacii-i-poteri/

Анализ существующих подходов к распознаванию лиц

3.2.1 Принцип локализации лица нейронной сетью: Для построения эффективного алгоритма локализации лица был проведен
С завидной регулярностью на Хабре появляются статьи, рассказывающие о тех или иных методах распознавания лиц. Мы решили не просто поддержать эту замечательную тему, но выложить наш внутренний документ, который освещает пусть и не все, но многие подходы к распознаванию лиц, их сильные и слабые места.

Он был составлен Андреем Гусаком, нашим инженером, для молодых сотрудников отдела машинного зрения, в образовательных, так сказать, целях. Сегодня предлагаем его все желающим. В конце статьи – впечатляющих размеров список литературы для самых любознательных. Итак, начнем.

Несмотря на большое разнообразие представленных алгоритмов, можно выделить общую структуру процесса распознавания лиц:

Общий процесс обработки изображения лица при распознавании

На первом этапе производится детектирование и локализация лица на изображении. На этапе распознавания производится выравнивание изображения лица (геометрическое и яркостное), вычисление признаков и непосредственно распознавание – сравнение вычисленных признаков с заложенными в базу данных эталонами. Основным отличием всех представленных алгоритмов будет вычисление признаков и сравнение их совокупностей между собой. Суть метода сводится к эластичному сопоставлению графов, описывающих изображения лиц. Лица представлены в виде графов со взвешенными вершинами и ребрами. На этапе распознавания один из графов – эталонный – остается неизменным, в то время как другой деформируется с целью наилучшей подгонки к первому. В подобных системах распознавания графы могут представлять собой как прямоугольную решетку, так и структуру, образованную характерными (антропометрическими) точками лица.

а)

б)

Пример структуры графа для распознавания лиц: а) регулярная решетка б) граф на основе антропометрических точек лица.

В вершинах графа вычисляются значения признаков, чаще всего используют комплексные значения фильтров Габора или их упорядоченных наборов – Габоровских вейвлет (строи Габора), которые вычисляются в некоторой локальной области вершины графа локально путем свертки значений яркости пикселей с фильтрами Габора.
Набор (банк, jet) фильтров Габора
Пример свертки изображения лица с двумя фильтрами Габора Ребра графа взвешиваются расстояниями между смежными вершинами. Различие (расстояние, дискриминационная характеристика) между двумя графами вычисляется при помощи некоторой ценовой функции деформации, учитывающей как различие между значениями признаков, вычисленными в вершинах, так и степень деформации ребер графа. Деформация графа происходит путем смещения каждой из его вершин на некоторое расстояние в определённых направлениях относительно ее исходного местоположения и выбора такой ее позиции, при которой разница между значениями признаков (откликов фильтров Габора) в вершине деформируемого графа и соответствующей ей вершине эталонного графа будет минимальной. Данная операция выполняется поочередно для всех вершин графа до тех пор, пока не будет достигнуто наименьшее суммарное различие между признаками деформируемого и эталонного графов. Значение ценовой функции деформации при таком положении деформируемого графа и будет являться мерой различия между входным изображением лица и эталонным графом. Данная «релаксационная» процедура деформации должна выполняться для всех эталонных лиц, заложенных в базу данных системы. Результат распознавания системы – эталон с наилучшим значением ценовой функции деформации.
Пример деформации графа в виде регулярной решетки В отдельных публикациях указывается 95-97%-ая эффективность распознавания даже при наличии различных эмоциональных выражениях и изменении ракурса лица до 15 градусов. Однако разработчики систем эластичного сравнения на графах ссылаются на высокую вычислительную стоимость данного подхода. Например, для сравнения входного изображения лица с 87 эталонными тратилось приблизительно 25 секунд при работе на параллельной ЭВМ с 23 транспьютерами [15] (Примечание: публикация датирована 1993 годом). В других публикациях по данной тематике время либо не указывается, либо говорится, что оно велико.

Недостатки: высокая вычислительная сложность процедуры распознавания. Низкая технологичность при запоминании новых эталонов. Линейная зависимость времени работы от размера базы данных лиц.

В настоящее время существует около десятка разновидности нейронных сетей (НС). Одним из самых широко используемых вариантов являться сеть, построенная на многослойном перцептроне, которая позволяет классифицировать поданное на вход изображение/сигнал в соответствии с предварительной настройкой/обучением сети. Обучаются нейронные сети на наборе обучающих примеров. Суть обучения сводится к настройке весов межнейронных связей в процессе решения оптимизационной задачи методом градиентного спуска. В процессе обучения НС происходит автоматическое извлечение ключевых признаков, определение их важности и построение взаимосвязей между ними. Предполагается, что обученная НС сможет применить опыт, полученный в процессе обучения, на неизвестные образы за счет обобщающих способностей. Наилучшие результаты в области распознавания лиц (по результатам анализа публикаций) показала Convolutional Neural Network или сверточная нейронная сеть (далее – СНС) [29-31], которая является логическим развитием идей таких архитектур НС как когнитрона и неокогнитрона. Успех обусловлен возможностью учета двумерной топологии изображения, в отличие от многослойного перцептрона. Отличительными особенностями СНС являются локальные рецепторные поля (обеспечивают локальную двумерную связность нейронов), общие веса (обеспечивают детектирование некоторых черт в любом месте изображения) и иерархическая организация с пространственными сэмплингом (spatial subsampling). Благодаря этим нововведениям СНС обеспечивает частичную устойчивость к изменениям масштаба, смещениям, поворотам, смене ракурса и прочим искажениям.
Схематичное изображение архитектуры сверточной нейронной сети Тестирование СНС на базе данных ORL, содержащей изображения лиц с небольшими изменениями освещения, масштаба, пространственных поворотов, положения и различными эмоциями, показало 96% точность распознавания. Свое развитие СНС получили в разработке DeepFace [47], которую приобрел для распознавания лиц пользователей своей соцсети. Все особенности архитектуры носят закрытый характер.
Принцип работы DeepFace

Недостатки нейронных сетей: добавление нового эталонного лица в базу данных требует полного переобучения сети на всем имеющемся наборе (достаточно длительная процедура, в зависимости от размера выборки от 1 часа до нескольких дней).

Проблемы математического характера, связанные с обучением: попадание в локальный оптимум, выбор оптимального шага оптимизации, переобучение и т. д. Трудно формализуемый этап выбора архитектуры сети (количество нейронов, слоев, характер связей).

Обобщая все вышесказанное, можно заключить, что НС – «черный ящик» с трудно интерпретируемыми результатами работы.

Одним из статистических методов распознавания лиц являются скрытые Марковские модели (СММ) с дискретным временем [32-34]. СММ используют статистические свойства сигналов и учитывают непосредственно их пространственные характеристики. Элементами модели являются: множество скрытых состояний, множество наблюдаемых состояний, матрица переходных вероятностей, начальная вероятность состояний. Каждому соответствует своя Марковская модель. При распознавании объекта проверяются сгенерированные для заданной базы объектов Марковские модели и ищется максимальная из наблюдаемых вероятность того, что последовательность наблюдений для данного объекта сгенерирована соответствующей моделью. На сегодняшний день не удалось найти примера коммерческого применения СММ для распознавания лиц.

Недостатки:

— необходимо подбирать параметры модели для каждой базы данных; — СММ не обладает различающей способностью, то есть алгоритм обучения только максимизирует отклик каждого изображения на свою модель, но не минимизирует отклик на другие модели. Одним из наиболее известных и проработанных является метод главных компонент (principal component analysis, PCA), основанный на преобразовании Карунена-Лоева. Первоначально метод главных компонент начал применяться в статистике для снижения пространства признаков без существенной потери информации. В задаче распознавания лиц его применяют главным образом для представления изображения лица вектором малой размерности (главных компонент), который сравнивается затем с эталонными векторами, заложенными в базу данных. Главной целью метода главных компонент является значительное уменьшение размерности пространства признаков таким образом, чтобы оно как можно лучше описывало «типичные» образы, принадлежащие множеству лиц. Используя этот метод можно выявить различные изменчивости в обучающей выборке изображений лиц и описать эту изменчивость в базисе нескольких ортогональных векторов, которые называются собственными (eigenface). Полученный один раз на обучающей выборке изображений лиц набор собственных векторов используется для кодирования всех остальных изображений лиц, которые представляются взвешенной комбинацией этих собственных векторов. Используя ограниченное количество собственных векторов можно получить сжатую аппроксимацию входному изображению лица, которую затем можно хранить в базе данных в виде вектора коэффициентов, служащего одновременно ключом поиска в базе данных лиц. Суть метода главных компонент сводится к следующему. Вначале весь обучающий набор лиц преобразуется в одну общую матрицу данных, где каждая строка представляет собой один экземпляр изображения лица, разложенного в строку. Все лица обучающего набора должны быть приведены к одному размеру и с нормированными гистограммами.
Преобразования обучающего набора лиц в одну общую матрицу X Затем производится нормировка данных и приведение строк к 0-му среднему и 1-й дисперсии, вычисляется матрица ковариации. Для полученной матрицы ковариации решается задача определения собственных значений и соответствующих им собственных векторов (собственные лица). Далее производится сортировка собственных векторов в порядке убывания собственных значений и оставляют только первые k векторов по правилу:

Алгоритм РСА
Пример первых десяти собственных векторов (собственных лиц), полученных на обучаемом наборе лиц

= 0.956*-1.842*+0.046 …

Пример построения (синтеза) человеческого лица с помощью комбинации собственных лиц и главных компонент

Принцип выбора базиса из первых лучших собственных векторов
Пример отображения лица в трехмерное метрическое пространство, полученном по трем собственным лицам и дальнейшее распознавание Метод главных компонент хорошо зарекомендовал себя в практических приложениях. Однако, в тех случаях, когда на изображении лица присутствуют значительные изменения в освещенности или выражении лица, эффективность метода значительно падает. Все дело в том, что PCA выбирает подпространство с такой целью, чтобы максимально аппроксимировать входной набор данных, а не выполнить дискриминацию между классами лиц. В [22] было предложено решение этой проблемы с использование линейного дискриминанта Фишера (в литературе встречается название “Eigen-Fisher”, “Fisherface”, LDA). LDA выбирает линейное подпространство, которое максимизирует отношение:

где

матрица межклассового разброса, и Матрица внутриклассового разброса; m – число классов в базе данных. LDA ищет проекцию данных, при которой классы являются максимально линейно сепарабельны (см. рисунок ниже). Для сравнения PCA ищет такую проекцию данных, при которой будет максимизирован разброс по всей базе данных лиц (без учета классов). По результатам экспериментов [22] в условиях сильного бакового и нижнего затенения изображений лиц Fisherface показал 95% эффективность по сравнению с 53% Eigenface.
Принципиальное отличие формирования проекций PCA и LDA Отличие PCA от LDA
Active Appearance Models (AAM) Активные модели внешнего вида (Active Appearance Models, AAM) — это статистические модели изображений, которые путем разного рода деформаций могут быть подогнаны под реальное изображение. Данный тип моделей в двумерном варианте был предложен Тимом Кутсом и Крисом Тейлором в 1998 году [17,18]. Первоначально активные модели внешнего вида применялись для оценки параметров изображений лиц. Активная модель внешнего вида содержит два типа параметров: параметры, связанные с формой (параметры формы), и параметры, связанные со статистической моделью пикселей изображения или текстурой (параметры внешнего вида). Перед использованием модель должна быть обучена на множестве заранее размеченных изображений. Разметка изображений производится вручную. Каждая метка имеет свой номер и определяет характерную точку, которую должна будет находить модель во время адаптации к новому изображению.
Пример разметки изображения лица из 68 точек, образующих форму AAM. Процедура обучения AAM начинается с нормализации форм на размеченных изображениях с целью компенсации различий в масштабе, наклоне и смещении. Для этого используется так называемый обобщенный Прокрустов анализ.
Координаты точек формы лица до и после нормализации Из всего множества нормированных точек затем выделяются главные компоненты с использованием метода PCA.
Модель формы AAM состоит из триангуляционной решетки s0 и линейной комбинации смещений si относительно s0 Далее из пикселей внутри треугольников, образуемых точками формы, формируется матрица, такая что, каждый ее столбец содержит значения пикселей соответствующей текстуры. Стоит отметить, что используемые для обучения текстуры могут быть как одноканальными (градации серого), так и многоканальными (например, пространство цветов RGB или другое). В случае многоканальных текстур векторы пикселов формируются отдельно по каждому из каналов, а потом выполняется их конкатенация. После нахождения главных компонент матрицы текстур модель AAM считается обученной. Модель внешнего вида AAM состоит из базового вида A0, определенного пикселями внутри базовой решетки s0 и линейной комбинации смещений Ai относительно A0 Пример конкретизации AAM. Вектор параметров формы p=(p_1,p_2,〖…,p〗_m )T=(-54,10,-9.1,…)T используется для синтеза модели формы s, а вектор параметров λ=(λ_1,λ_2,〖…,λ〗_m )T=(3559,351,-256,…)Tдля синтеза внешнего вида модели. Итоговая модель лица 〖M(W(x;p))〗 получается как комбинация двух моделей – формы и внешнего вида. Подгонка модели под конкретное изображение лица выполняется в процессе решения оптимизационной задачи, суть которой сводится к минимизации функционала методом градиентного спуска. Найденные при этом параметры модели и будут отражать положение модели на конкретном изображении.

Пример подгонки модели на конкретное изображение за 20 итераций процедуры градиентного спуска. С помощью AAM можно моделировать изображения объектов, подверженных как жесткой, так и нежесткой деформации. ААМ состоит из набора параметров, часть которых представляют форму лица, остальные задают его текстуру. Под деформации обычно понимают геометрическое преобразование в виде композиции переноса, поворота и масштабирования. При решении задачи локализации лица на изображении выполняется поиск параметров (расположение, форма, текстура) ААМ, которые представляют синтезируемое изображение, наиболее близкое к наблюдаемому. По степени близости AAM подгоняемому изображению принимается решение – есть лицо или нет.

Active Shape Models (ASM)

Суть метода ASM [16,19,20] заключается в учете статистических связей между расположением антропометрических точек. На имеющейся выборке изображений лиц, снятых в анфас. На изображении эксперт размечает расположение антропометрических точек. На каждом изображении точки пронумерованы в одинаковом порядке.

Пример представления формы лица с использованием 68 точек Для того чтобы привести координаты на всех изображениях к единой системе обычно выполняется т.н. обобщенный прокрустов анализ, в результате которого все точки приводятся к одному масштабу и центрируются. Далее для всего набора образов вычисляется средняя форма и матрица ковариации. На основе матрицы ковариации вычисляются собственные вектора, которые затем сортируются в порядке убывания соответствующих им собственных значений. Модель ASM определяется матрицей Φ и вектором средней формы s ̅. Тогда любая форма может быть описана с помощью модели и параметров: Локализации ASM модели на новом, не входящем в обучающую выборку изображении осуществляется в процессе решения оптимизационной задачи. а) б) в) г)

Иллюстрация процесса локализации модели ASM на конкретном изображении: а) начальное положение б) после 5 итераций в) после 10 итераций г) модель сошлась

Однако все же главной целью AAM и ASM является не распознавание лиц, а точная локализация лица и антропометрических точек на изображении для дальнейшей обработки. Практически во всех алгоритмах обязательным этапом, предваряющим классификацию, является выравнивание, под которым понимается выравнивание изображения лица во фронтальное положение относительно камеры или приведение совокупности лиц (например, в обучающей выборке для обучения классификатора) к единой системе координат. Для реализации этого этапа необходима локализация на изображении характерных для всех лиц антропометрических точек – чаще всего это центры зрачков или уголки глаз. Разные исследователи выделяют разные группы таких точек. В целях сокращения вычислительных затрат для систем реального времени разработчики выделяют не более 10 таких точек [1]. Модели AAM и ASM как раз и предназначены для того чтобы точно локализовать эти антропометрические точки на изображении лица. Проблема освещенности Проблема положения головы (лицо – это, все же, 3D объект). С целью оценки эффективности предложенных алгоритмов распознавания лиц агентство DARPA и исследовательская лаборатория армии США разработали программу FERET (face recognition technology). В масштабных тестах программы FERET принимали участие алгоритмы, основанные на гибком сравнении на графах и всевозможные модификации метода главных компонент (PCA). Эффективность всех алгоритмов была примерно одинаковой. В этой связи трудно или даже невозможно провести четкие различия между ними (особенно если согласовать даты тестирования). Для фронтальных изображений, сделанных в один и тот же день, приемлемая точность распознавания, как правило, составляет 95%. Для изображений, сделанных разными аппаратами и при разном освещении, точность, как правило, падает до 80%. Для изображений, сделанных с разницей в год, точность распознавания составило примерно 50%. При этом стоит заметить, что даже 50 процентов — это более чем приемлемая точность работы системы подобного рода. Ежегодно FERET публикует отчет о сравнительном испытании современных систем распознавания лиц [55] на базе лиц более одного миллиона. К большому сожалению в последних отчетах не раскрываются принципы построения систем распознавания, а публикуются только результаты работы коммерческих систем. На сегодняшний день лидирующей является система NeoFace разработанная компанией NEC. 1. Image-based Face Recognition — Issues and Methods 2. Face Detection A Survey.pdf 3. Face Recognition A Literature Survey 4. A survey of face recognition techniques 5. A survey of face detection, extraction and recognition 6. Обзор методов идентификации людей на основе изображений лиц 7. Методы распознавания человека по изображению лица 8. Сравнительный анализ алгоритмов распознавания лиц 9. Face Recognition Techniques 10. Об одном подходе к локализации антропометрических точек. 11. Распознавание лиц на групповых фотографиях с использованием алгоритмов сегментации 12. Отчет о НИР 2-й этап по распознаванию лиц 13. Face Recognition by Elastic Bunch Graph Matching 14. Алгоритмы идентификации человека по фотопортрету на основе геометриче-ских преобразований. Диссертация. 15. Distortion Invariant Object Recognition in the Dynamic Link Architecture 16. Facial Recognition Using Active Shape Models, Local Patches and Support Vector Machines 17. Face Recognition Using Active Appearance Models 18. Active Appearance Models for Face Recognition 19. Face Alignment Using Active Shape Model And Support Vector Machine 20. Active Shape Models — Their Training and Application 21. Fisher Vector Faces in the Wild 22. Eigenfaces vs. Fisherfaces Recognition Using Class Specific Linear Projection 23. Eigenfaces and fisherfaces 24. Dimensionality Reduction 25. ICCV 2011 Tutorial on Parts Based Deformable Registration 26. Constrained Local Model for Face Alignment, a Tutorial 27. Who are you – Learning person specific classifiers from video 28. Распознавание человека по изображению лица нейросетевыми методами 29. Face Recognition A Convolutional Neural Network Approach 30. Face Recognition using Convolutional Neural Network and Simple Logistic Classifier 31. Face Image Analysis With Convolutional Neural Networks 32. Методы распознавания лиц на основе скрытых марковских процессов. Авторе-ферат 33. Применение скрытых марковских моделей для распознавания лиц 34. Face Detection and Recognition Using Hidden Markovs Models 35. Face Recognition with GNU Octave-MATLAB 36. Face Recognition with Python 37. Anthropometric 3D Face Recognition 38. 3D Face Recognition 39. Face Recognition Fitting a 3D Morphable Model 40. Face Recognition 41. Robust Face Recognition via Sparse Representation 42. The FERET Evaluation Methodology For Face-Recognition Algorithms 43. Поиск лиц в электронных коллекциях исторических фотографий 44. Design, Implementation and Evaluation of Hardware Vision Systems dedicated to Real-Time Face Recognition 45. An Introduction to the Good, the Bad, & the Ugly Face Recognition Challenge Prob-lem 46. Исследование и разработка методов обнаружения человеческого лица на циф-ровых изображениях. Диплом 47. DeepFace Closing the Gap to Human-Level Performance in Face Verification 48. Taking the bite automated naming of characters in TV video 49. Towards a Practical Face Recognition System Robust Alignment and Illumination by Sparse Representation 50. Алгоритмы обнаружения лица человека для решения прикладных задач анализа и обработки изображений 51. Обнаружение и локализация лица на изображении 52. Модифицированный мотод Виолы-Джонса 53. Разработка и анализ алгоритмов детектирования и классификации объектов на основе методов машинного обучения 54. Overview of the Face Recognition Grand Challenge 55. Face Recognition Vendor Test (FRVT)

56. Об эффективности применения алгоритма SURF в задаче идентификации лиц

Источник: https://habr.com/post/238129/

Scicenter1
Добавить комментарий