Анализ зависимости мощности, потребляемой приводом, от варьируемых

Анализ причин низкой энергоэффективности насосного оборудования на промышленных предприятиях

Анализ зависимости мощности, потребляемой приводом, от варьируемых

Рассматривая работу насосного оборудования на отечественных предприятиях, иногда приходится видеть ошибки при его эксплуатации.

Но, говоря о них, мы, как правило, имеем в виду недостаточно эффективные действия специалистов (они отвечают за эксплуатацию), допущенные по незнанию и из-за недостатка информации.

Однако часто, несмотря на знания и опыт, персонал вынужден использовать то оборудование и работать в тех условиях, которые имеются на предприятии в настоящее время и в силу различного рода причин остаются без изменений.

Поэтому с учетом вышеизложенного правильнее говорить не об ошибках, а об особенностях эксплуатации насосов. Практически на любом объекте, где используется насосное оборудование, введенное в эксплуатацию 20 лет назад и более, обследование насосных агрегатов способно выявить потенциал энергосбережения.

Это cправедливо для самых разных отраслей экономики, будь то водоснабжение, мелиорация, промышленное производство, нефтедобыча или энергетика. Значительная часть насосных станций укомплектована старыми насосами, выработавшими свой ресурс, и необходимость модернизации под сомнение не ставится.

Вопрос заключается в правильном выборе того или иного технического решения с учетом сроков окупаемости.

Например, можно заменить старый насос на новый аналогичного типоразмера электродвигатель, модернизировать систему управления или подобрать насосы других типоразмеров и изменить технологическую схему водоснабжения.

В любом случае решение должно приниматься на основе достоверных данных о работе насосов и требуемых параметрах насосной станции, получить которые позволяет обследование насосного оборудования.

Оно включает комплекс мероприятий: сбор и обработку информации о состоянии, рабочих характеристиках, объеме потребляемых энергоресурсов и условиях работы насосного оборудования, направленных на повышение надежности, снижение энергопотребления и затрат при его эксплуатации.

После принятия в 2009 г. ФЗ «Об энергосбережении и о повышении энергетической эффективности…» большинство предприятий, эксплуатирующих насосное оборудование, провели предписанные данным законом энергетические обследования.

Однако не всегда они отражают реальный уровень энергопотребления насосного оборудования в общем объеме энергопотребления предприятий.

Часто приходилось видеть отчеты по обследованию предприятий водного хозяйства, где насосам уделялось всего две страницы, а размер возможной экономии определялся как разность номинальных мощностей электродвигателей до и после модернизации.

Особенности режимов работы и их изменение во времени не учитывались вовсе. В реальности подобные факторы играют важную, если не решающую роль для повышения эффективности оборудования и объекта в целом. При проведении обследования вне зависимости от специфики объекта необходимо последовательно выполнить следующие действия:

  • определить параметры сети, типовые режимы работы насосных станций, профиль и диапазон изменения параметров;
  • определить, насколько установленное оборудование соответствует характеристикам сети;
  • на основе полученных данных определить конкретные элементы сети, модернизация или изменение режима работы которых позволят сократить энергопотребление;
  • оценить размер экономии;
  • выдать необходимые рекомендации.

Основными параметрами сети являются ее расход и напор, которые должна обеспечить насосная станция. Данные величины определяются по показаниям стационарных и портативных расходомеров и манометров как в текущем режиме на момент проведения обследования, так и с применением электронных баз данных автоматизированной системы управления (АСУ) объекта.

Сопоставление поля рабочих режимов насосных станций и напорных характеристик установленных насосов позволяет сделать вывод о соответствии имеющегося оборудования параметрам сети и при необходимости запланировать его модернизацию или установку новых насосов.

Примером модернизации может служить подрезка наружного диаметра рабочего колеса, изменение количества работающих насосов, применение частотно-регулируемого привода (ЧРП).

Сравнение энергопотребления установленного насосного оборудования (так называемого базового энергопотребления) и энергопотребления после модернизации позволит оценить величину экономии и сделать вывод о целесообразности проведения работ. При этом величину базового энергопотребления также можно определить по текущим показаниям счетчика электроэнергии либо по данным (АСУ).

Энергопотребление после модернизации находится расчетным путем. Если режимы работы насосных станций имеют переменный характер, корректным будет сравнение энергопотребления в нескольких характерных режимах или применение в расчетах математической модели, описывающей изменение режимов эксплуатации с заданным интервалом времени.

В качестве примера на рис.1 приведено поле рабочих режимов насосной станции и напорные характеристики (кривые 1, 2, 3 и 4) при работе одного, двух, трех и четырех установленных насосов, соответственно.

Как следует из рис.1, напор установленных насосов значительно превышает требуемый напор сети. Указанная разница напоров теряется на задвижках при регулировании подачи насосов.

Оптимальным для данной сети является применение насосов с меньшим напором (характеристики 1’—4’).

Практический опыт проведения обследований насосного оборудования позволяет выделить следующие причины низкой эффективности при его эксплуатации:

1. На более чем 70% объектов выявлено значительное превышение напора установленных насосов — так называемый переразмер по напору.

Основной причиной уменьшения требуемых напоров сети является снижение в течение последних 20-ти лет водопотребления промышленных предприятий и населения, связанное с этим сокращение объемов перекачки насосных станций и уменьшение потерь напора в трубопроводах.

Чтобы обеспечить необходимые значения подачи и давления на выходе насосной станции, прибегают к регулированию насосов с помощью дросселирования. Как следствие — потери напора на задвижке составляют от 15 до 60%.

Справка. При регулировании насоса двухстороннего входа серии Д 3200-75 путем дросселирования 40% напора на задвижке, в условиях постоянной эксплуатации годовые потери электроэнергии составляют 2,72 млн кВт·ч, что при стоимости электроэнергии 3,00 рубля за 1 кВт·ч составляет около 8,2 млн рублей.

На 60% объектов (в том числе 70% предприятий водоснабжения) выявлена эксплуатация насосов в режиме перегруза, т. е. работа со значительным превышением по подаче правой границы рабочей области, как правило, составляющей 120% номинальной подачи насоса.

Режим перегруза приводит к увеличению нагрузки на вал и подшипниковые узлы, возникновению кавитации и повышенному уровню вибрации, вызывает снижение ресурса подшипников и уплотнений, служит причиной поломки вала ротора и преждевременного выхода насоса из строя.

Эксплуатация агрегатов в режиме перегруза может носить постоянный характер, так как при отсутствии ярко выраженных признаков (шум, вибрация, частые поломки) не всегда фиксируется обслуживающим персоналом.

Отсутствие или неисправность приборов для измерения подачи насоса и тока обмоток статора также не позволяют отследить данный режим. В результате при регулировании режимов работы насосов часто руководствуются только показаниями манометров.

Поскольку при комплектации агрегата электродвигатель, как правило, подбирается с запасом мощности 10% и более, режим перегруза насоса часто является штатным для электродвигателя. Это позволяет длительно эксплуатировать насос на повышенных подачах, а частые выходы оборудования из строя списывать на плохое качество отдельных узлов и насоса в целом.

2. Частым явлением, характерным для половины обследованных объектов, являются падение напорных характеристик и снижение КПД насосов. Ухудшение данных характеристик, как правило, происходит по причине увеличения зазора в щелевых уплотнениях рабочего колеса вследствие их износа.

В результате возрастают перетечки перекачиваемой жидкости из напорной полости во всасывающую полость, а подача и напор насоса уменьшаются.

Износ щелевых уплотнений характерен для насосов, находящихся в эксплуатации длительное время и не ремонтировавшихся, а также для случаев перекачивания жидкости с повышенным содержанием твердых частиц. Снижение КПД может составлять 10% и более. Справка.

Для рассмотренного ранее насоса Д 3200-75 уменьшение КПД на 10% может привести к увеличению затрат на электроэнергию на 2,2 млн рублей, что сопоставимо со стоимостью нового насоса и работ по его замене. Кроме того, при длительном периоде эксплуатации, а также при перемотке электродвигателя его КПД зачастую снижается.

На некоторых объектах отсутствует достоверная информация об установленном насосном оборудовании, документация (паспорт и руководство по эксплуатации) на насосы с указанием их характеристик. Не ведутся записи в журналах о выполняемых на предприятии ремонтах и модернизациях насосов.

Отсутствуют, закрашены или не соответствуют форме завода-изготовителя маркировочные таблички насосов и электродвигателей. Встречается так называемый «недогруз», т.е. превышение номинальной мощности электродвигателя, максимальной на валу агрегата более чем в два раза. КПД электродвигателя в данном режиме значительно ниже номинального значения.

Для некоторых объектов характерен так называемый «недогруз насоса», т. е. его эксплуатация с подачей за пределами левой границы рабочей области, составляющей, как правило, величину 0,5–0,7 его номинальной подачи.

Работа в данных режимах может привести к рециркуляции перекачиваемой жидкости на входе и выходе рабочего колеса, возникновению низкорасходной кавитации и вызвать снижение ресурса рабочего колеса, подшипников и уплотнений. На ряде насосных станций имеет место работа насосов в режиме кавитации, вызванной изменением параметров на входе.

Причиной этому служат снижение уровня подающего резервуара, обусловленное технологическими особенностями, засорение водозаборных решеток, уменьшение отметки уровня водоема на водозаборе (табл.1).

Кроме того, встречаются явления, напрямую не связанные с насосным оборудованием, — обратные перетоки внутри станции, неисправность запорнорегулирующей арматуры, которые также влияют на эффективность эксплуатации насосов.

Из описанных причин низкой эффективности следуют и способы ее повышения (табл.2).

Это, прежде всего, применение энергоэффективного насосного оборудования, а также ЧРП, позволяющее обеспечить эксплуатацию насоса в режимах высокого КПД во всем диапазоне подач насосной станции.

Здесь необходимо отметить, что применение ЧРП в отличие от эффективного насосного оборудования подходит не для всех объектов.

Если большую часть напора сети составляет статический напор, например, при подъеме воды на большую высоту, то применение частотного регулирования при определенных условиях окажется менее эффективным по сравнению с другими способами.

На половине рассмотренных объектов снижения энергопотребления удалось достичь путем установки насосов с пониженным (относительно установленных ранее) напором и/или увеличенным значением номинальной подачи. Например, на рис.

 2 показаны энергоэффективные насосы двустороннего входа Delium (АО «Группа ГМС») — внешний вид и поле напорных характеристик.

Иногда в качестве основного способа либо в дополнение к указанным способам необходимо изменить регламент работы насосов на объекте.

В зависимости от специфики объекта и объема запланированной модернизации экономия электроэнергии составит от 10 до 60%, а срок окупаемости данных мероприятий, как правило, не превышает двух—пяти лет.

При планировании мероприятий по повышению энергоэффективности насосного оборудования необходимо учитывать не только его начальную стоимость, но и затраты на обслуживание, а так же планы по изменению объемов перекачки насосной станции на несколько лет вперед. Это позволит подобрать оборудование нужного типоразмера и избежать необоснованных затрат.

С. Соколов, заместитель директора программы по насосному оборудованию для водоснабжения, филиал АО «ГМС Ливгидромаш» в г.Москва

Журнал «Промышленные и отопительные котельные и мини-ТЭЦ», № 2, 2017

Источник: http://gidromashina.ru/articles/analiz-prichin-nizkoj-energoeffektivnosti-nasosnogo-oborudovaniya-na-promyishlennyix-predpriyatiyax.html

Энергоэффективная эксплуатация насосного оборудования

Анализ зависимости мощности, потребляемой приводом, от варьируемых

Водоснабжение и водоотведение относится к отраслям промышленности с интенсивным использованием насосного оборудования, доля электроэнергии потребляемой насосами составляет более 50% от общего энергопотребления. Поэтому вопрос снижения затрат на электроэнергию для водоснабжающих организаций заключается, прежде всего, в эффективном использовании насосного оборудования.

Большая работа в данном направлении проводится компанией ОАО «Группа ГМС» — холдингом, объединяющим ведущих производителей насосного оборудования в России и СНГ.

На настоящий момент в структуру компании входят 16 предприятий с общей численностью персонала более 12 000 человек.

Среди них широко известные ОАО «Ливнынасос», ОАО «Ливгидромаш», ОАО «Насосэнергомаш», ОАО «Бавленский завод «Электродвигатель», ОАО «Завод «Промбурвод» и другие предприятия.

В среднем к.п.д. насосных станций составляет 10-40 %. Несмотря на то, что к.п.д. наиболее часто применяемых на их насосов, составляет от 60% для насосов типа К и КМ и более 75% для насосов типа Д.

Главные причины неэффективного использования насосного оборудования следующие:

  • Переразмеривание насосов, т.е. установка насосов с параметрами подачи и напора большими, чем требуется для обеспечения работы насосной системы.
  • Регулирование режима работы насоса при помощи задвижек.

Основные причины, которые приводят к переразмериванию насосов следующие:

  • На стадии проектирования закладывается насосное оборудование с запасом, на случай непредвиденных пиковых нагрузок или с учетом перспективного развития микрорайона, производства и т.д. Нередки случаи, когда подобный коэффициент запаса может достигать 50%.
  • Изменение параметров сети – отступления от проектной документации при строительстве, коррозия труб во время эксплуатации, замена участков трубопроводов при ремонте и т.п. Изменение объемов водопотребления в связи с ростом или сокращением численности населения, изменением количества промышленных предприятий и т. д.

Все эти факторы приводят к тому, что параметры насосов, установленных на насосных станциях, не соответствуют требованиям системы.

Для обеспечения требуемых параметров насосной станции по подаче, напору в системе эксплуатирующие организации прибегают к регулированию потока при помощи задвижек, что приводит к значительному увеличению потребляемой мощности как из-за работы насоса в зоне низкого к.п.д., так и за счет потерь при дросселировании.

Достаточно часто потребитель низкую энергетическую эффективность системы «насос-сеть» ошибочно относит на счет низкого к.п.д.

насоса, а поскольку на объектах водоснабжения эксплуатируются, в основном насосы российского производства, то формируется мнение о ненадежности и низкой эффективности отечественного насосного оборудования. Помимо низкого к.п.д.

, работа насосов за пределами рабочего диапазона значительно сокращает срок их службы и надежность.

При замене насосного оборудования одной из главных целей является снижение энергопотребления.

Обосновывая применение зарубежного оборудования, представители иностранных компаний в качестве исходных данных для проведения сравнительного анализа берут значения энергопотребления насосов при реальных условиях эксплуатации и сравнивают их с данными каталогов зарубежных производителей.

Результатом такого анализа становится вывод о, якобы, быстрой окупаемости зарубежного оборудования, которое по стоимости превышает стоимость отечественного в несколько раз, в течение одного-двух лет.

Основной причиной значительного сокращения энергопотребления при замене одних насосов на другие является не техническое превосходство вновь установленных насосов, а соответствие их параметров требованиям системы.

Это достигается правильным подбором насоса в соответствии с реальными характеристиками системы.

Поэтому сведения, которые появляются в открытых источниках, рекламных материалах о том, что замена насосов российского производства на насосы зарубежного производства приводит к снижению энергопотребления на 20-30%, являются некорректными.

В тех системах водоснабжения, где параметры сети меняются во времени в зависимости от изменения суточного или сезонного водопотребления подобрать насос, для которого диапазон изменения параметров сети находился бы в пределах рабочего диапазона насоса, бывает невозможно.

В этом случае значительную экономию может принести применение систем управления насосной станцией в зависимости от меняющихся параметров сети. В подобных системах регулирование параметров насосов осуществляется при помощи частотного и каскадного регулирования.

По данным Гидравлического института США и Европейской ассоциации производителей насосов основные мероприятия, которые приводят к снижению энергопотребления и его размеры приведены в таблице.

Методы снижения энергопотребления в насосных системахРазмер снижения энергопотребления
Замена регулирования подачи задвижкой  на  регулирование частотным преобразователем10 – 60%
Снижение частоты вращения5 – 40%
Каскадное регулирование при помощи параллельной установки насосов10 – 30%
Подрезка рабочего колеса, замена рабочего колеса10 – 20%
Замена электродвигателей на более эффективные1 – 3%
Замена насосов на более эффективные1 – 2%

Необходимо обратить внимание на то, что снижение энергопотребления за счет замены насосов на аналогичные может принести максимум 2% экономии. Основной потенциал по энергосбережению заключается в замене регулирования подачи насоса задвижкой на частотное или каскадное регулирование, т.е. применении систем способных адаптировать параметры насоса под требования системы.

При принятии решения о применении того или иного способа регулирования необходимо учитывать, что каждый из этих способов регулирования также следует применять, отталкиваясь от параметров сети, на которую работает насос, в частности, доля статической и динамической составляющих. 
Как видно из первого графика на рис.

1 при работе насоса на сеть с преимущественной статической составляющей снижение частоты вращения насоса до 83% от номинала приводит к снижению к.п.д. с 60 до 35% и выходу рабочей точки за пределы рабочего диапазона.

Поэтому при работе насоса на сеть с преимущественной статической составляющей применение частотного привода нерационально и требует более тщательного анализа.

Рис.1. Работа насоса с частотным регулированием на сеть с преимущественной статической составляющей.

Рис.2. Работа насоса с частотным регулированием на сеть с преимущественными потерями на трение.

С другой стороны, работа того же насоса при различных частотах вращения на сеть с преимущественными потерями на трение рис.2, приводит к тому, что рабочая точка смещается вдоль линии максимального к.п.д.

, и насос работает в оптимальном режиме на всех частотах.

Поэтому применение частотного привода насосов в системах с преимущественными потерями на трение является наиболее рациональным и приводит к значительному сокращению энергопотребления.

Как видно из графиков на рис.3, при каскадном регулировании режима работы насосной станции при помощи включения и выключения необходимого количества насосов установленных параллельно при работе сеть с преимущественно статической составляющей суммарная подача увеличивается примерно на одно и тоже значение.

Рис.3. Каскадное регулирование режима работы насосной станции при работе на сеть с преимущественно статической составляющей.

Рис.4. Каскадное регулирование режима работы насосной станции при работе на сеть с преимущественно динамической составляющей.

При работе той же насосной станции на сеть с преимущественными  потерями на трение, рис. 4., подключение каждого последующего насоса приводит к непропорциональному увеличению суммарной подачи. Причем, подключение каждого последующего насоса увеличивает подачу на меньшее значение.

В связи с этим, применение каскадного регулирования приносит эффект в системах с преимущественной статической составляющей, а применение частотного привода рекомендуется для систем с преимущественными потерями на трение. 
Выводы.

В настоящее время существует миф о том, что экономия электроэнергии при замене отечественных насосов на импортные может составить 20-30%. Материалы, изложенные в статье, показывают, что энергоэффективная эксплуатация насосов достигается, главным образом, за счет согласованной работы на сеть.

Параметры насосов производства ОАО «Группа «ГМС» по к.п.д., потребляемой мощности не уступают, а иногда и превосходят насосы импортного производства. При сравнении потребляемой мощности аналогичных насосов разных производителей необходимо обращать внимание на равенство  параметров подачи и напора, на которые подбирается насос.

Значительное сокращение энергопотребления насосных станций может быть достигнуто при использовании отечественного насосного оборудования, но при значительно меньших затратах.

Авторы :

Твердохлеб И.Б. — к.т.н., директор по НИОКР УК «ГМС» 
Костюк А.В. — к.ф-м.н., директор программы УК «ГМС» « Назад

Источник: https://deodv.ru/stati/article_post/energoeffektivnaya-ekspluataciya-nasosnogo-oborudovaniya

Технико-экономическое обоснование внедрения систем управления с частотно-регулируемым электроприводом

Анализ зависимости мощности, потребляемой приводом, от варьируемых

В.А. Ченчик (ООО «Русэлком М»).

в журнале Химическая техника №3/2015

Определение экономической эффективности, которую можно получить от внедрения преобразователей частоты (ПЧ), является актуальной проблемой. Потребителю хотелось бы до приобретения ПЧ иметь гарантии, что средства будут израсходованы не зря: общие утверждения о том, что экономия электроэнергии составит 30–80%, требуют подтверждения.

К сожалению, универсальной методики на все случаи применения ПЧ нет и быть не может, так как экономический эффект зависит от многих факторов, характерных для конкретной установки.

Однако существует большое количество типовых решений, применяемых в народном хозяйстве, например, для системы отопления и горячего и водоснабжения на центральных тепловых пунктах (ЦТП).

Московским энергетическим институтом (МЭИ) разработана методика оценки экономической эффективности применения частотного электропривода в системах водоснабжения зданий, разработана «Инструкция по расчету экономической эффективности применения частотно-регулируемого электропривода», согласованная с Главгосэнергонадзором и утвержденная Минтопэнерго.

Теоретические вопросы экономии электроэнергии достаточно хорошо отражены в литературе [1–4].

Даже среди специалистов тепловодоснабжения существует распространенное, но ошибочное мнение, что применение частотного регулирования при правильно подобранных характеристиках насоса никакой экономии электроэнергии дать не может.

Да, такое возможно: при неправильной выбранной величине уставки давления для преобразователей частоты суммарное потребление электроэнергии насосом с ПЧ может не дать экономию.

Очень важно, чтобы величина уставки давления соответствовала минимальному напору при максимальном расходе.

Если поставить датчик давления непосредственно у потребителя, то при уменьшении расхода автоматически снижается необходимый напор, т.е. заданный параметр регулирования для ПЧ будет формироваться Q–H характеристикой сети.

Для оценки экономической эффективности от применения преобразователей частоты в любом случае необходимо организовать установку приборов учета электрической энергии и произвести замеры электропотребления до установки ПЧ и после его установки. Кроме установки ПЧ нужно провести все необходимые регулировки и настройки в работе системы.

Наибольший экономический эффект от внедрения частотно-регулируемого привода с точки зрения энергосберегающих мероприятий достигается на квадратичных нагрузках (центробежные насосы, вентиляторы) в случае замены дросселирования частотным регулированием.

Как известно, число оборотов двигателя пропорционально частоте его питания. При питании электродвигателя от сети (50 Гц) число его оборотов будет максимальным и неизменным. При питании электродвигателя от преобразователя частоты

(регулируемая выходная частота 0…50 Гц) число его оборотов будет изменяться от нуля до максимального значения.

Изменение частоты вращения рабочего колеса ведет к изменению всех его рабочих параметров: расхода (пропорционален числу оборотов); давления (пропорционально квадрату числа оборотов); потребляемой мощности (пропорциональна кубу числа оборотов).

Эти отношения выражаются с помощью так называемых формул приведения:

где Q, Q0 – расход соответственно при максимальном и измененном числе оборотов; H, H0 – напор соответственно при максимальном и измененном числе оборотов; N, N0 – мощность, потребляемая электродвигателем соответственно при максимальном и измененном числе оборотов; n, n0 – соответственно максимальное и измененное число оборотов.

Типичная характеристика энергопотребления при разных способах регулирования приведена на рис. 1.

Рис. 1. Потребление мощности при различных способах регулирования частоты вращения насосов

Кроме того, применение преобразователей частоты позволяет снизить потребление реактивной мощности, пусковые токи и гидроудары, что положительно сказывается на сроках службы технологического оборудования и энергетической инфраструктуры.

Приведем пример. Насосная станция по подачи воды состоит из трех насосов. Регулирование производительности насосов осуществляется путем закрывания задвижки на выходе насоса – методом дросселирования.

Контроль давления на выходе насоса осуществляется оператором визуально по манометру с определенным интервалом времени. В работе всегда находится один насос. Ротация насосов также осуществляется оператором вручную.

Параметры насосных агрегатов:

НасосН1Н2Н3
Производительность, м3/ч125012501250
ЭлектродвигательАЛП 104-4АЛП 104-4АЛП 104-4
Мощность, кВт250250250
Сила тока, А436436436
Частота вращения, об/мин148014801480

Предпосылками для модернизации могут служить следующие факторы:

  • регулирование производительности методом дросселирования не эффективно с точки зрения энергосбережения;
  • частые запуски напрямую от сети насосных агрегатов приводят к повышенному изнашиванию оборудования из-за 7–10-кратных пусковых токов;
  • работа в прерывистом режиме обусловливает большие динамические потери в трубопроводах;
  • неконтролируемое потребление энергоносителя.

Для устранения указанных проблем рекомендуется: установить преобразователь частоты на приводы насосов по следующему принципу: один преобразователь частоты в составе станции управления группой насосов СУЧЭ-3-250 с возможностью переключения его между насосами, а также датчик давления в магистрали.

Внедрение предложенного решения приведет к снижению энергопотребления за счет уменьшения частоты вращения электродвигателей насосных агрегатов, увеличению срока службы насосных агрегатов в результате исключения прерывистого режима работы насоса (исключение гидроударов и пусковых токов); повышению степени автоматизации технологического процесса и уменьшению потребления энергоносителя.

Суммарный экономический эффект от внедрения предложенных решений будет определяться снижением затрат на потребленную электроэнергию; уменьшением амортизационных отчислений на технологическое оборудование а также затрат на сервис технологического оборудования (увеличение межремонтного ресурса); снижением затрат на персонал за счет повышения уровня автоматизации.

Расчет снижения энергозатрат

В работе принимает участие один насос производительностью Qсеть = 1250 м3/ч. Проанализировав данные оператора по расходу за месяц, определяем, что средний расход составляет Qпотр = 625 м3/ч.

Таким образом, фактически необходимый расход можно создавать не путем закрывания задвижки (дросселированием), а с помощью преобразователя частоты, снижая частоту вращения электродвигателя и тем самым снижая энергопотребление.

Определим энергопотребление электродвигателей при регулировании расхода методом дросселирования.

Мощность насоса 250 кВт, но учитывая, что при дросселировании также снижается энергопотребление (см. рис. 1), находим, что для точки кривой, соответствующей данной насосной системе, энергопотребление при дросселировании будет снижено на ~25 % и соответственно потребляемая мощность электродвигателя Nд = 0,75×250 = = 187,5 кВт.

Определим энергопотребление электродвигателя при регулировании расхода с помощью преобразователя частоты:

Разница в энергопотреблении между способом регулирования расхода путем закрывания задвижки и способом снижения частоты вращения электродвигателя с помощью преобразователя частоты: Δ N = Nд – N0 = 156,25 кВт.

Фактически Δ N – это напрасно потребляемая мощность, которую можно было бы сэкономить, используя преобразователь частоты.

Оценка технологического эффекта

При внедрении частотного регулирования в связи с уменьшением рабочей частоты вращения вала привода снижается износ насоса.

В связи с плавными пусками и остановами уменьшаются гидравлические и механические нагрузки на технологическое оборудование (трубопроводы, запорную и регулирующую арматуру). Все перечисленное обусловливает увеличение сроков службы и межремонтного ресурса.

То же можно сказать и про нагрузки на питающую сеть в связи с исключением пусковых токов при пусках электродвигателей насосов напрямую от сети.

Рис. 2. Силовая схема подключения трехнасосной станции

Ориентировочно срок службы насосного агрегата с электродвигателем увеличивается на 10%, при этом затраты на обслуживание уменьшаются на 10%.

Таким образом, высокая инвестиционная привлекательность внедрения станций управления, оснащенных преобразователями частоты, устройствами плавного пуска, а также объединения станций управления в единую систему АСУ ТП основана на следующих факторах:

  • прямой экономии от снижения потребления электроэнергии при регулировании производительности насосных агрегатов (для разных объектов от 25 до 50%);
  • прямой экономии за счет снижения непроизводительных утечек воды при оптимизации давления в напорном трубопроводе (не менее 25–30 % общего объема утечек);
  • экономии фонда заработной платы сокращаемого дежурного персонала;
  • резком снижении аварийности на сетях (не менее чем в 5–10 раз);
  • увеличении не менее чем в 3 раза ресурса и межремонтных сроков насосов, электродвигателей, коммутационного оборудования;
  • снижении затрат на электрическое отопление на объектах, бытовое обеспечение дежурного персонала;
  • значительном увеличении надежности системы в целом благодаря устранению «человеческого фактора» и автоматической диагностике системой всех ее элементов и своевременном устранении возможных аварийных ситуаций.

Для получения максимального эффекта экономии от применения ПЧ необходимо предварительно провести обследование и изучение сети. Сейчас это сделать достаточно просто – есть переносные ультразвуковые расходомеры, позволяющие быстро и точно определить фактические характеристики сети и насосного агрегата.

Все здесь сказанное относится к работе сетей с правильным подбором насосов. Как правило, насосы для сети подбираются с «запасом», запас при применении ПЧ не теряется, при нештатном увеличении расхода ПЧ с таким насосом обеспечит и нештатный режим.

Немаловажными факторами являются также следующие:

  • социальный (повышение качества водоснабжения и экономия расходов на ремонт оборудования);
  • экологический (снижение потребления электроэнергии обеспечивает снижение выброса СО2). Нормативно-технической базой для обоснования экономической эффективности являются следующие документы:
  • Инструкция по расчету экономической эффективности применения частотно-регулируемого электропривода. Министерство топлива и энергетики РФ; 1997.
  • ВРД 39-1.10-052–2001. Методические указания по выбору и применению асинхронного частотно-регулируемого привода мощностью до 500 кВт. ОАО «Газпром» (Управление энергетики). 2001.
  • ГОСТ 13109–97. Совместимость технических средств электромагнитная. «Нормы качества электрической энергии в системах электроснабжения общего назначения».

Общие принципы расчета экономической эффективности

Документ должен содержать следующие разделы: исходные данные для расчета; расчет экономической эффективности системы; результаты расчета.

В разделе «Исходные данные для расчета» должны быть приведены: ссылка на методику определения экономической эффективности; перечень факторов, обусловливающих повышение эффективности функционирования объекта управления при создании СУ (станция управления); исходные данные, необходимые для расчета согласно принятой методике; ссылка на источники получения исходных данных.

В разделе «Расчет экономической эффективности системы» должны содержаться следующие данные: расчет затрат на создание СУ; расчет затрат на содержание и эксплуатацию системы; расчет ожидаемой экономии по основным технико-экономическим показателям и ожидаемого годового экономического эффекта от внедрения СУ в целом; расчет срока окупаемости затрат.

В разделе «Результаты расчета» должны быть приведены основные результаты следующих расчетов: затрат на создание системы; затрат на содержание и эксплуатацию; ожидаемого годового экономического эффекта от создания системы; срока окупаемости затрат.

При оценке экономического эффекта от внедрения автоматизированных систем частотно-регулируемого привода необходимо использовать следующие данные: стоимость электроэнергии; затраты на сервисное обслуживание оборудования составляют ~3% стоимости, не считая командировочных расходов; срок службы оборудования (10 лет).

Список литературы

  1. Технический паспорт «Станция управления частотно-регулируемым электроприводом насосных агрегатов типа СУ-ЧЭ-ПП». НПФ «Электро-РПС». 2002.
  2. Шакарян Ю.Г. Инструкция по расчету экономической эффективности применения частотно-регулируемого электропривода, АО ВНИИЭ, МЭИ, М.1997 г.
  3. ВРД 39-1.10-052–2001. Методические указания по выбору и применению асинхронного частотно-регулируемого привода мощностью до 500 кВт. М.: ОАО «Газпром», 1999.
  4. ГОСТ 13109–97. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.

Источник: https://chemtech.ru/tehniko-jekonomicheskoe-obosnovanie-vnedrenija-sistem-upravlenija-s-chastotno-reguliruemym-jelektroprivodom/

Scicenter1
Добавить комментарий