Концепция лимитирующих факторов: Поскольку факторы среды, действующие одновременно, обладают разной

Неоднозначность действия факторов на разные функции

Концепция лимитирующих факторов:  Поскольку факторы среды, действующие одновременно, обладают разной

Закон неоднозначного действия фактора на разные функции, согласно которому каждый экологический фактор неодинаково влияет на разные функции организма; оптимум для одних процессов может являться пессимумом для других.

Поскольку факторы среды, действующие одновременно, обладают разной силой воздействия, то жизнедеятельность организма будет зависеть от тех факторов, которые больше всего отклоняются от зоны оптимума, и если хотя бы один из них выйдет за пределы выносливости, то организм погибнет. Факторы, которые определяют жизнедеятельность организма в данной среде, называются ограничивающими или лимитирующими. Ряд ученых в разное время занимались изучением лимитирующих факторов, в результате чего были сформулированы законы о лимитирующих факторах [4].

«Закон минимума». Впервые изучением лимитирующих факторов занимался немецкий химик Ю. Либих.

Он изучал влияние разнообразных факторов на рост растений и установил, что урожай культур лимитируется не теми элементами питания, которые требуются в больших количествах и которых в почве достаточно, а теми, которые требуются в малых количествах и которых в почве недостаточно.

На основании этих наблюдений он в 1840 году сформулировал следующий закон: «Рост растения зависит от того элемента питания, который присутствует в минимальном количестве», который получил название «закон минимума».

Исследования в этой области показали, что для успешного применения данного закона на практике необходимо учитывать два вспомогательных принципа.

  • 1. «Закон минимума» строго применим только в условиях стационарного состояния, т.е. когда приток и отток энергии и вещества в среде сбалансированы. Если нет стационарного состояния, эффект минимума отсутствует.
  • 2. В среде между факторами происходит взаимодействие, в результате которого один фактор может частично заменять лимитирующий фактор и тогда последний перестает быть лимитирующим. Например, потребность в цинке у некоторых растений в тени ниже, чем на свету, значит, в тени цинк с меньшей вероятностью может быть лимитирующим фактором.

Дальнейшие исследования в области аутэкологии показали, что «закон минимума» справедлив не только для растений, но и для животных и человека.

Позже этот закон был истолкован следующим образом: «Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей», т.е.

жизненные возможности организма лимитируются экологическими факторами, количество и качество которых близко к необходимому организму минимуму. Дальнейшее снижение или ухудшение этих факторов ведет организм к гибели.

Концепция лимитирующих факторов была дополнена в XX веке еще двумя законами, поскольку изучение взаимодействия организма со средой показало, что ответная реакция организма на изменение силы экологического фактора описывается куполообразной кривой.

«Закон ограничивающих факторов». Этот закон был установлен в 1909 году Ф.

Блэкманом и формулируется следующим образом: «Факторы среды, имеющие в конкретных условиях пессимальное значение, особенно затрудняют (ограничивают) возможность существования вида в данных условиях, вопреки и несмотря на оптимальное сочетание других отдельных условий».

Однако, как уже указывалось выше, пессимальное значение фактор может иметь как при низкой, так и при высокой силе воздействия. Поэтому «закон ограничивающих факторов» не дает однозначного ответа, какой из факторов, имеющих пессимальные значения, максимальный или минимальный по силе, является лимитирующим [13].

«Закон толерантности». Этот закон был установлен американским ученым В. Шелфордом в 1913 году.

Он формулируется следующим образом: «Лимитирующим фактором процветания организма (вида) может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости (толерантности) организма к данному фактору, а в конкретной ситуации тот из них, который ближе к пределам толерантности».

Для успешного применения этого закона следует учитывать ряд вспомогательных принципов.

  • 1. Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении другого фактора.
  • 2. Организмы с широкими пределами толерантности практически ко всем факторам обычно наиболее широко распространены и образуют экотипы, отличающиеся по положению зоны оптимума в пределах толерантности.
  • 3. Если условия по одному экологическому фактору не оптимальны для организма, то может сузиться и диапазон толерантности к другим экологическим факторам. Например, при лимитирующем содержании азота в почве снижается засухоустойчивость у злаков.
  • 4. В природе организмы очень часто оказываются в условиях, не соответствующих оптимальному диапазону того или иного фактора. Пользоваться оптимальными условиями среды организмам часто мешают межпопуляционные и внутрипопуляционные взаимоотношения, т.е. межвидовые и внутривидовые биотические факторы. Например, при большом количестве сорняков культурные растения не могут в полной мере использовать солнечную энергию, воду и элементы питания, аналогично как и при слишком густом посеве культурных растений.
  • 5. Начальные этапы развития организмов обычно являются критическими, т.к. многие факторы среды в этот период часто становятся лимитирующими в силу того, что пределы толерантности для развивающихся особей обычно уже, чем для взрослых организмов. Например, взрослое растение кипариса может расти на сухом нагорье и «по колено в воде», тогда как прорастание семян и развитие проростков возможно только в умеренно увлажненной почве [2].

Ценность концепции лимитирующих факторов состоит в том, что она дает экологу отправную точку при исследовании сложных ситуаций в природе. Основное внимание следует уделять тем факторам, которые функционально важны для организма на каких-то этапах его жизненного цикла. Тогда удастся довольно точно предсказать результат изменений среды.

Для этого нужно:

  • 1. Путем наблюдений, анализа, эксперимента обнаружить функционально важные для организма факторы.
  • 2. Определить, как эти факторы влияют на особей, популяции, сообщества.

Чтобы определить, сможет ли вид существовать в данном регионе, нужно выяснить, не выходят ли какие-либо лимитирующие факторы среды за пределы его экологической валентности, особенно в период размножения и развития.

Выявление лимитирующих факторов очень важно в практике сельского хозяйства, т.к., направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или продуктивность животных. Таким образом, знание законов о лимитирующих факторах является ключом к управлению жизнедеятельностью организмов в природе и хозяйстве.

Источник: https://studwood.ru/998062/ekologiya/neodnoznachnost_deystviya_faktorov_raznye_funktsii

Обобщающая концепция лимитирующих факторов

Концепция лимитирующих факторов:  Поскольку факторы среды, действующие одновременно, обладают разной

Если значение хотя бы одного из известных факторов приближается к минимуму или максимуму, существование и процветание организма, популяции или сообщества становится зависимым именно от этого лимитирующего жизнедеятельность фактора.

Закон минимума. В середине прошлого века немецкий химик Ю.

Либих (1840), изучая влияние разнообразных питательных веществ на рост растений, обнаружил, что урожай зависит не от тех элементов питания, которые требуются в больших количествах и присутствуют в изобилии (например, СО2), а от тех, которые, хотя и нужны растению в меньших количествах, но практически отсутствуют в почве или недоступны (например, фосфор, цинк, бор). Эту закономерность Либих сформулировал так: «Рост растения зависит от того элемента питания, который присутствует в минимальном количестве».

Лимитирующие факторы.

Представление о лимитирующих факторах основывается на двух законах экологии: законе минимума и законе толерантности.

Позднее этот вывод стал известен как закон минимума Либиха и был распространен на другие экологические факторы. Ограничивать, или лимитировать развитие организмов могут тепло, свет, вода, кислород, и другие факторы, если их значение соответствует экологическому минимуму.

Таким образом, закон минимума Либиха можно сформулировать в общем виде так: рост и развитие организмов зависят в первую очередь от тех факторов природной среды, значение которых приближается к экологическому минимуму.

Дальнейшие исследования показали, что закон минимума имеет два ограничения, которые следует у при практическом применении.

Первое ограничение состоит в том, что закон Либиха строго применим лишь в условиях стационарного состояния системы. Второе ограничение связано с взаимодействием нескольких факторов.

Иногда организм способен заменить (хотя бы частично) дефицитный элемент другим, химически близким.

Закон толерантности (ерпения) был открыт английским биологом В.

Шелфордом (1913), который обратил внимание на то, что ограничивать развитие живых организмов могут не только те экологические факторы, значения которых минимальны, но и те, которые характеризуются экологическим максимумом.

Избыток тепла, света, воды и даже питательных веществ может оказаться столь же губительным, как и их недостаток. Диапазон экологического фактора между минимумом и максимумом В. Шелфорд назвал пределом толерантности.

Позднее были проведены многочисленные исследования, которые позволили установить пределы толерантности, т. е. возможного существования, для многих растений и животных. Законы Ю. Либиха и В. Шелфорда помогли понять многие явления и распределение организмов в природе.

Закон толерантности Шелфордаможно сформулировать в общем виде так: рост и развитие организма зависят в первую очередь от тех факторов среды, значения которых приближаются к экологическому минимуму или экологическому максимуму.

Было установлено следующее:

— организмы с широким диапазоном толерантности ко всем факторам широко распространены в природе и часто бывают космополитами. Например, многие патогенные бактерии;

— организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон относительно другого. Например, люди более выносливы к отсутствию пищи, чем к отсутствию воды, т. е предел толерантности относительно воды более узкий, чем относительно пищи;

— если условия по одному из экологических факторов становятся неоптимальными, то может измениться и предел толерантности по другим факторам. Например, при недостатке азота в почве злакам требуется гораздо больше воды;

— наблюдаемые в природе реальные пределы толерантности меньше, чем потенциальные возможности организма адаптированного к данному фактору.

Это объясняется тем, что в природе пользоваться оптимальными физическими условиями среды часто мешают биотические отношения (конкуренция, отсутствие опылителей, хищники) и другие взаимодействия факторов.

Различают потенциальную и реализованную экологические ниши.

— пределы толерантности у размножающихся особей и потомства меньше, чем у взрослых особей, т. е. самки в период размножения и их потомство менее вы к условиям жизни, чем взрослые организмы. Забота о потомстве и бережное отношение к материнству продиктованы законами природы. К сожалению, иногда социальные достижения противоречат этим законам;

— экстремальные (стрессовые) значения одного из факторов ведут к снижению предела толерантности по другим факторам.

Лимитирующим фактором называется любой экологический фактор, приближающийся к крайним значениям пределов толерантности или превышающий их. Такие сильно отклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни организмов и биологических систем, т.к. контролируют условия существования.

Наиболее важными лимитирующими факторами на суше являются свет, температура и вода, а море – свет, температура и соленость. Все факторы среды зависят друг от друга и действуют согласованно.

Например, содержание кислорода в наземных местообитаниях велико, и он настолько доступен, что практически никогда не служит лимитирующим фактором, следовательно, он мало интересует экологов, занимающихся наземными экосистемами. Напротив, в воде кислород является фактором, лимитирующим развитие живых организмов (рыб).

Лимитирующие факторы определяют и географический ареал вида. Так, продвижение организмов на север лимитируется недостатком тепла. Биотические факторы также часто ограничивают распространение тех или иных организмов.

Например, завезенный из Средиземноморья в Калифорнию инжир не плодоносил до тех пор, пока не завезли туда определенный вид осы — единственного опылителя этого растения. Выявление лимитирующих факторов очень важно во многих видах деятельности, особенно в сельском хозяйстве.

Если целенаправленно влиять на лимитирующие условия, можно быстро и эффективно повышать урожайность растений и производительность животных. Так, при разведении пшеницы на кислых почвах никакие агрономические мероприятия не дадут эффекта, если не применять известкование, которое снизит ограничивающее действие кислот. Умелое регулирование условиями существования может дать эффективные результаты управления.

Ценность концепции лимитирующих факторов состоит в том, что она позволяет разобраться в сложных взаимосвязях в экосистемах. Приоритетными в тот или иной отрезок времени оказываются различные лимитирующие факторы, которые являются основой при изучении экосистем и управлении ими.

Важным лимитирующим фактором в современных условиях является загрязнение природной среды.

Оно происходит в результате внесения в среду веществ, которых в ней не было (металлы, новые синтезированные химические вещества) и которые не разлагаются вовсе, либо существующих в биосфере (например, углекислый газ), но вносимый в чрезмерно больших количествах, не дающих возможности переработать их естественным способом. Образно говоря, загрязняющие вещества — это ресурсы не на своем месте.

Отсюда следует, что загрязнение приводит к нежелательному изменению физических, химических и биологических характеристик среды, которое оказывает неблагоприятное влияние на экосистемы и человека.

Загрязнение увеличивается как в результате роста населения и его потребностей, так и в результате использования новых технологий, обслуживающих эти потребности. Оно бывает химическим, тепловым, шумовым.

Главный лимитирующий фактор, по Ю. Одуму, — это размеры и качество ойкоса, а не просто число калорий, которые можно выжать из земли. Ландшафт не только склад запасов, но и дом, в котором мы живем. Следует стремиться сохранить по меньшей мере треть всей суши в качестве охраняемого открытого пространства.

Это означает, что треть всей нашей среды обитания должны составлять национальные парки, заповедники, зеленые зоны, участки дикой природы. Ограничение использования земли является аналогом природного регулирующего механизма, называемого территориальным поведением.

При помощи этого механизма многие виды животных избегают скученности и вызываемого ею стресса.

Взаимодействие и компенсация факторов. В природе экологические факторы действуют не независимо друг от друга. Анализ влияния одного фактора на организм или сообщество не самоцель, а способ оценки сравнительной значимости различных условий, действующих совместно в реальных экосистемах. Температура и влажность — самые важные климатические факторы в наземных местообитаниях.

Взаимодействие этих двух факторов формирует два основных типа климата: морской и континентальный. Водоемы смягчают климат суши, так как вода обладает высокой удельной теплотой плавления и теплоемкостью. Поэтому морскому климату, который формируется вблизи больших озер и морей, свойственны менее резкие колебания и температуры, и влажности, чем континентальному.

Воздействие температуры и влажности на организмы также зависит от соотношения их абсолютных значений. Так, температура оказывает более выраженное лимитирующее влияние, если влажность очень велика или очень мала. Высокие и низкие температуры переносятся хуже при высокой влажности, чем при умеренной. Организмы приспосабливаются к условиям существования и изменяют их, т. е.

компенсируют отрицательное воздействие экологических факторов.

Компенсация экологических факторов — это стремление организмов ослабить лимитирующее действие физических, биотических и антропогенных влияний. Компенсация факторов возможна на уровне организма, и наиболее эффективна на уровне сообщества.

Один и тот же вид, имеющий широкое географическое распространение, может приобретать физиологические и морфологические (гр, форма, очертание) особенности, адаптированные к местным условиям. Например, у животных уши, хвосты, лапы тем короче, а тело тем массивнее, чем холоднее климат.

У животных с хорошо развитой моторной активностью компенсация факторов возможна благодаря адаптивному поведению. Возникающие в процессе адаптации изменения часто генетически закрепляются.

Естественную периодичность изменений экологических факторов организмы используют для распределения своих функций во времени. На уровне сообщества компенсация факторов может осуществляться сменой видов по градиенту условий среды. Например, поведение организмов во времени в зависимости от длины дня.

Амплитуда длины дня возрастает с географической широтой, что позволяет организмам учитывать не только время года, но и широту местности. Фотопериод — это пусковой механизм последовательности физиологических процессов. Он определяет рост и цветение растений, линьку, миграции и размножение у птиц и млекопитающих и т. д.

Фотопериод связан с 6иологическими часами и служит универсальным механизмом регулирования функций во времени. Биологические часы связывают ритмы экологических факторов с физиологическими ритмами, позволяют организмам приспосабливаться к суточной, сезонной, приливно- отливной и другой динамике факторов. Изменяя фотопериод, можно вызывать и желаемые изменения функций организма..

У многих высших организмов адаптация к фотопериоду закрепляется генетически, т. е биологические часы могут работать и при отсутствии закономерной суточной или сезонной динамики.

Таким образом, смысл анализа условий среды не в том, чтобы составить перечень экологических факторов, а в том, чтобы обнаружить функционально важные лимитирующие факторы и оценить в какой степени состав и структура экосистем зависит от взаимодействия этих факторов. Только в этом случае удается достоверно прогнозировать результаты изменений и нарушений и управлять экосистемами.

Источник: https://studopedia.su/7_49968_obobshchayushchaya-kontseptsiya-limitiruyushchih-faktorov.html

Концепция лимитирующих факторов

Концепция лимитирующих факторов:  Поскольку факторы среды, действующие одновременно, обладают разной

Концепция лимитирующих факторов

   Поскольку факторы среды, действующие одновременно, обладают разной силой воздействия, то жизнедеятельность организма будет зависеть от тех факторов, которые больше всего отклоняются от зоны оптимума, и если хотя бы один из них выйдет за пределы выносливости, то организм погибнет.

Факторы, которые определяют жизнедеятельность организма в данной среде, называются ограничивающими или лимитирующими. Ряд ученых в разное время занимались изучением лимитирующих факторов, в результате чего были сформулированы законы о лимитирующих факторах.   «Закон минимума». Впервые изучением лимитирующих факторов занимался немецкий химик Ю.Либих.

Он изучал влияние разнообразных факторов на рост растений и установил, что урожай культур лимитируется не теми элементами питания, которые требуются в больших количествах и которых в почве достаточно, а теми, которые требуются в малых количествах и которых в почве недостаточно.

На основании этих наблюдений он в 1840 году сформулировал следующий закон: «Рост растения зависит от того элемента питания, который присутствует в минимальном количестве», который получил название «закон минимума». Исследования в этой области показали, что для успешного применения данного закона на практике необходимо учитывать два вспомогательных принципа.   1.

«Закон минимума» строго применим только в условиях стационарного состояния, т.е. когда приток и отток энергии и вещества в среде сбалансированы. Если нет стационарного состояния, эффект минимума отсутствует.   2. В среде между факторами происходит взаимодействие, в результате которого один фактор может частично заменять лимитирующий фактор и тогда последний перестает быть лимитирующим.

Например, потребность в цинке у некоторых растений в тени ниже, чем на свету, значит, в тени цинк с меньшей вероятностью может быть лимитирующим фактором.   Дальнейшие исследования в области аутэкологии показали, что «закон минимума» справедлив не только для растений. но и для животных и человека.

Позже этот закон был истолкован следующим образом: «Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей», т.е. жизненные возможности организма лимитируются экологическими факторами, количество и качество которых близко к необходимому организму минимуму. Дальнейшее снижение или ухудшение этих факторов ведет организм к гибели.

   Концепция лимитирующих факторов была дополнена в XX веке еще двумя законами, поскольку изучение взаимодействия организма со средой показало, что ответная реакция организма на изменение силы экологического фактора описывается куполообразной кривой (рис. 1).   «Закон ограничивающих факторов». Этот закон был установлен в 1909 году Ф.

Блэкманом и формулируется следующим образом: «Факторы среды, имеющие в конкретных условиях пессимальное значение, особенно затрудняют (ограничивают) возможность существования вида в данных условиях, вопреки и несмотря на оптимальное сочетание других отдельных условий». Однако, как уже указывалось выше, пессималь- ное значение фактор может иметь как при низкой, так и при высокой силе воздействия.

Поэтому «закон ограничивающих факторов» не дает однозначного ответа, какой из факторов, имеющих пессимальные значения, максимальный или минимальный по силе, является лимитирующим.   «Закон толерантности». Этот закон был установлен американским ученым В.Шелфордом в 1913 году.

Он формулируется следующим образом: «Лимитирующим фактором процветания организма (вида) может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости (толерантности) организма к данному фактору, а в конкретной ситуации тот из них, который ближе к пределам толерантности».

Для успешного применения этого закона следует учитывать ряд вспомогательных принципов.   1. Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении другого фактора.   2.

Организмы с широкими пределами толерантности практически ко всем факторам обычно наиболее широко распространены и образуют экотипы, отличающиеся по положению зоны оптимума в пределах толерантности.   3. Если условия по одному экологическому фактору не оптимальны для организма, то может сузиться и диапазон толерантности к другим экологическим факторам.

Например, при лимитирующем содержании азота в почве снижается засухоустойчивость у злаков.   4. В природе организмы очень часто оказываются в условиях, не соответствующих оптимальному диапазону того или иного фактора. Пользоваться оптимальными условиями среды организмам часто мешают межпопуляционные и внутрипопуляционные взаимоотношения, т.е. межвидовые и внутривидовые биотические факторы.

Например, при большом количестве сорняков культурные растения не могут в полной мере использовать солнечную энергию, воду и элементы питания, аналогично как и при слишком густом посеве культурных растений.   5. Начальные этапы развития организмов обычно являются критическими, т.к.

многие факторы среды в этот период часто становятся лимитирующими в силу того, что пределы толерантности для развивающихся особей обычно уже, чем для взрослых организмов. Например, взрослое растение кипариса может расти на сухом нагорье и «по колено в воде», тогда как прорастание семян и развитие проростков возможно только в умеренно увлажненной почве.

   Ценность концепции лимитирующих факторов состоит в том, что она дает экологу отправную точку при исследовании сложных ситуаций в природе. Основное внимание следует уделять тем факторам, которые функционально важны для организма на каких-то этапах его жизненного цикла. Тогда удастся довольно точно предсказать результат изменений среды. Для этого нужно:   1. Путем наблюдений, анализа, эксперимента обнаружить функционально важные для организма факторы.   2. Определить, как эти факторы влияют на особей, популяции, сообщества. Чтобы определить, сможет ли вид существовать в данном регионе, нужно выяснить, не выходят ли какие-либо лимитирующие факторы среды за пределы его экологической валентности, особенно в период размножения и развития.

   Выявление лимитирующих факторов очень важно в практике сельского хозяйства, т.к., направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или продуктивность животных. Таким образом, знание законов о лимитирующих факторах является ключом к управлению жизнедеятельностью организмов в природе и хозяйстве.

Глава II. Учение о популяциях (демэкология)
Глава II. Учение о популяциях (демэкология)Понятие о популяции. Популяционная структура видаУнитарные и модулярные организмыХарактеристика свойств популяцииДинамика численности популяций и ее регуляция

 

Источник: https://yourlib.net/content/view/12106/143/

59127 — Стр 3

Концепция лимитирующих факторов:  Поскольку факторы среды, действующие одновременно, обладают разной

закреплены генетически и являются адаптациями. В прикладной экологии часто оставляли без внимания возможности генетического закрепления особенностей местных линий организмов, вследствие чего попытка интродукции животных и растений с целью увеличения разнообразия популяций оказывалась неудачной.

При изучении влияния комплекса факторов среды на организм были установлены определенные закономерности в ответной реакции организмов, которые впоследствии были сформулированы в виде соответствующих правил или принципов.

«Правило предварения». В 1951 году В.В.Алехин для растений установил «правило предварения», согласно которому при продвижении с севера на юг в распределении растительности наблюдается закономерность, представленная на рис.2.

Рис. 2. Закономерность распределения растительности при продвижении с севера на юг («правило предварения») (по В. Радкевичу, 1997)

Это правило позволяет предсказать состав растительности на еще необследованной местности или восстановить прежний ее облик там, где она уже уничтожена.

«Принцип стациальной верности». Свойство видов избирательно занимать те или иные стации получило название «принцип стациальной верности».

Это важнейшая экологи- ческая закономерность, имеющая значение при определении полезности или вредности воздействия факторов.

Стацией называется участок территории, занятый популяцией вида и характеризующийся однородными экологическими условиями, а также определенным количеством корма.

«Правило смены местообитаний». «Принцип стациальной верности» применим в условиях ограниченного времени

èпространства. Закономерное изменение видами своих местообитаний в широком диапазоне времени и пространства было сформулировано как «правило смены местообитаний» в 1966 году ученым Г.Я.Бей-Биенко. В пространстве «правило смены местообитаний» выражается в зональной и вертикальной смене стаций и в зональной смене ярусов, а во времени – в сезонной и годичной смене стаций.

«Правило смены ярусов». М.С.Гиляров ввел «правило смены ярусов», согласно которому в разных зонах одни и те же виды занимают неодинаковые ярусы. Это характерно для трансзональных видов, т.е. видов, широко распространенных

èвстречающихся во многих природных зонах.

Концепция лимитирующих факторов

Поскольку факторы среды, действующие одновременно, обладают разной силой воздействия, то жизнедеятельность организма будет зависеть от тех факторов, которые больше всего отклоняются от зоны оптимума, и если хотя бы один из них выйдет за пределы выносливости, то организм погибнет. Факторы, которые определяют жизнедеятельность организма в данной среде, называются ограничивающими или лимитирующими. Ряд ученых в разное время занимались изучением лимитирующих факторов, в результате чего были сформулированы законы о лимитирующих факторах.

«Закон минимума». Впервые изучением лимитирующих факторов занимался немецкий химик Ю.Либих.

Он изучал влияние разнообразных факторов на рост растений и установил, что урожай культур лимитируется не теми элементами питания, которые требуются в больших количествах и которых в почве достаточно, а теми, которые требуются в малых количествах и которых в почве недостаточно.

На основании этих наблюдений он в 1840 году сформулировал следующий закон: «Рост растения зависит от того элемента питания, который присутствует в минимальном количестве», который получил название «закон минимума». Исследования в этой области показали, что для успешного применения данного закона на практике необходимо учитывать два вспомогательных принципа.

1.«Закон минимума» строго применим только в условиях стационарного состояния, т.е. когда приток и отток энергии и вещества в среде сбалансированы. Если нет стационарного состояния, эффект минимума отсутствует.

2.В среде между факторами происходит взаимодействие,

âрезультате которого один фактор может частично заменять лимитирующий фактор и тогда последний перестает быть лимитирующим. Например, потребность в цинке у некоторых растений в тени ниже, чем на свету, значит, в тени цинк с меньшей вероятностью может быть лимитирующим фактором.

Дальнейшие исследования в области аутэкологии показали, что «закон минимума» справедлив не только для растений. но и для животных и человека.

Позже этот закон был истолкован следующим образом: «Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей», т.е.

жизненные возможности организма лимитируются экологическими факторами, количество и качество которых близко к необходимому организму минимуму. Дальнейшее снижение или ухудшение этих факторов ведет организм к гибели.

Концепция лимитирующих факторов была дополнена в XX веке еще двумя законами, поскольку изучение взаимодействия организма со средой показало, что ответная реакция организма на изменение силы экологического фактора описывается куполообразной кривой (рис. 1).

«Закон ограничивающих факторов». Этот закон был установлен в 1909 году Ф.

Блэкманом и формулируется следующим образом: «Факторы среды, имеющие в конкретных условиях пессимальное значение, особенно затрудняют (ограни- чивают) возможность существования вида в данных условиях, вопреки и несмотря на оптимальное сочетание других отдельных условий».

Однако, как уже указывалось выше, пессимальное значение фактор может иметь как при низкой, так и при высокой силе воздействия. Поэтому «закон ограничивающих факторов» не дает однозначного ответа, какой из факторов, имеющих пессимальные значения, максимальный или минимальный по силе, является лимитирующим.

«Закон толерантности». Этот закон был установлен американским ученым В.Шелфордом в 1913 году. Он формулиру-

ется следующим образом: «Лимитирующим фактором процветания организма (вида) может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости (толерантности) организма к данному фактору, а в конкретной ситуации тот из них, который ближе к пределам толерантности». Для успешного применения этого закона следует учитывать ряд вспомогательных принципов.

1.Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении другого фактора.

2.Организмы с широкими пределами толерантности практически ко всем факторам обычно наиболее широко распространены и образуют экотипы, отличающиеся по положению зоны оптимума в пределах толерантности.

3.Если условия по одному экологическому фактору не оптимальны для организма, то может сузиться и диапазон толерантности к другим экологическим факторам. Например, при лимитирующем содержании азота в почве снижается засухоустойчивость у злаков.

4.В природе организмы очень часто оказываются в условиях, не соответствующих оптимальному диапазону того или иного фактора. Пользоваться оптимальными условиями среды организмам часто мешают межпопуляционные и внутрипопуляционные взаимоотношения, т.е.

межвидовые и внутривидовые биотические факторы. Например, при большом количестве сорняков культурные растения не могут в полной мере использовать солнечную энергию, воду и элементы питания, аналогично как и при слишком густом посеве культурных растений.

5.Начальные этапы развития организмов обычно являются критическими, т.к.

многие факторы среды в этот период часто становятся лимитирующими в силу того, что пределы толерантности для развивающихся особей обычно уже, чем для взрослых организмов.

Например, взрослое растение кипариса может расти на сухом нагорье и «по колено в воде», тогда как прорастание семян и развитие проростков возможно только в умеренно увлажненной почве.

Ценность концепции лимитирующих факторов состоит в том, что она дает экологу отправную точку при исследовании сложных ситуаций в природе. Основное внимание следует уделять тем факторам, которые функционально важны для организма на каких-то этапах его жизненного цикла. Тогда удастся довольно точно предсказать результат изменений среды. Для этого нужно:

1.Путем наблюдений, анализа, эксперимента обнаружить функционально важные для организма факторы.

2.Определить, как эти факторы влияют на особей, популяции, сообщества.

Чтобы определить, сможет ли вид существовать в данном регионе, нужно выяснить, не выходят ли какие-либо лимитирующие факторы среды за пределы его экологической валентности, особенно в период размножения и развития.

Выявление лимитирующих факторов очень важно в практике сельского хозяйства, т.к., направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или продуктивность животных. Таким образом, знание законов о лимитирующих факторах является ключом к управлению жизнедеятельностью организмов в природе и хозяйстве.

ГЛАВА II. УЧЕНИЕ О ПОПУЛЯЦИЯХ (ДЕМЭКОЛОГИЯ)

Понятие о популяции. Популяционная структура вида

Каждый вид организмов утверждает себя в окружающей среде не как простая сумма особей, а в форме группировок, представляющих собой единое функциональное целое – популяцию.

Эта закономерность получила название «правило объединения в популяции», которое было сформулировано в 1903 г. Слово популяция произошло от латинского «популюс» – народ, население.

Популяция – это население одного вида на определенной территории с общим генофондом, одинаковой морфологией и одинаковым жизненным циклом.

Популяция – это группа особей одного вида, обитающих на общей территории в сходных экологических условиях, свободно скрещивающихся и способных поддерживать свою чис-

ленность необозримо длительное время, относительно изолированная от других популяций.

Если особи вида постоянно перемещаются на обширных пространствах, то такой вид имеет небольшое число крупных популяций (северные олени, песцы). Границы между ними проходят по крупным географическим преградам (реки, хребты и др.). Подвижный вид с небольшим ареалом может быть представлен только одной популяцией.

При слабой способности к перемещению формируется множество популяций, отражающих мозаичность ландшафта. У растений и малоподвижных особей их число находится в прямой зависимости от степени разнородности среды. Степень их обособленности разная.

В некоторых случаях они резко разделяются территорией, непригодной для обитания, и четко локализованы в пространстве (оазисы, долины рек в пустыне). При сплошном поселении выделить границы между популяциями можно условно между областями с высокой плотностью (малый суслик в степях, божья коровка семиточечная).

В пределах одного и того же вида могут быть популяции как с хорошо выраженными, так и со смазанными границами (клоп черепашка). Между популяциями может быть достаточно регулярный либо эпизодический обмен особями. Связи между популяциями поддерживают вид как единое целое.

Слишком длительная и полная изоляция популяций приводит обычно к образованию новых видов. Таким образом, популяции служат элементарными эволюционирующими структурами. Популяция является первой надорганизменной биологической макросистемой.

Широкое распространение в экологии получила концепция иерархии популяций в зависимости от размеров занимаемой территории. По Н.П.Наумову, вид подразделяется на популяции вследствие приспособления к огромному разнообразию условий в пределах ареала.

Так как ареал, населяемый видом, при больших размерах занимает несколько географических зон, характеризующихся определенными геогра- фиче-скими условиями, то вид подразделяется на группы, населяющие эти зоны, которые называются географическими популяциями.

Географическая популяция – это группа

особей, населяющих территорию с однородными географи- ческими условиями существования. Они довольно основательно разграничены и относительно изолированы (популяции белки в Сибири и Беларуси).

Поскольку в пределах географической зоны встречаются различные биотопы (уча- стки ареала с однородными экологическими условиями), то внутривидовые группировки, приуроченные к ним, называются экологическими популяциями.

Они слабо изолированы друг от друга и обмен генетической информацией в них происходит чаще, чем между географическими популяциями, которые они формируют в совокупности.

Поскольку в пределах биотопа корм распределяется неравномерно, то совокупности особей вида, населяющих участки с однородными условиями и определенным количеством корма, называются элементарными популяциями, а сами участки биотопа – стациями.

Стации бывают: 1) стации переживания – это стации, богатые кормом; и 2) стации расселения – это стации, бедные кормом. Экологические популяции, в среде обитания которых преобладают стации переживания, называются независимыми, а там, где преобладают стации расселения, – зависимыми. Если в биотопе соотношение стаций переживания и стаций расселения примерно равное, то экологическая популяция, населяющая данный биотоп, называется полузависимой. Элементарные популяции в совокупности формируют экологические популяции. Нередко в природе границы между элементарными популяциями стираются.

Следовательно, каждый вид слагается из того или иного числа относительно изолированных популяций. Однако изоляция не бывает абсолютной, в результате чего поддерживается их общность в пределах вида.

По В.Н.Беклемишеву, выделяют несколько типов популяций, используя разные критерии. По особенности к самовоспроизведению различают постоянные и временные популяции. Постоянные популяции могут быть независимыми, т.е. не нуждающимися в притоке особей извне для поддержания своей численности, и полузависимыми, когда приток извне существенно повышает их численность, но они могут сохра-

няться и без него. Временные популяции называют зависимыми, длительность их существования зависит от иммигрантов. По размерам различают карликовые, обычные локальные и суперпопуляции. Суперпопуляции занимают сплошь обширные территории и состоят из большого числа особей. В их пределах вычленяют субпопуляции разных масштабов

Унитарные и модулярные организмы

До сих пор мы исходили из позиции, что особи в популяциях абсолютно тождественны одна другой, а это неверно с многих точек зрения. Во-первых, почти все организмы в течение жизненного цикла проходят ряд стадий (яйцо, личинка, куколка, имаго).

И на разных стадиях они подвержены влиянию различных факторов, а также мигрируют, умирают, размножаются с разной скоростью. Стадии нужно выделять и подходить к ним с особой меркой. Во-вторых, особи могут быть разнокачественными и когда они на одной стадии, и когда нет стадий (размеры тела, запасы резервных веществ).

Еще большее различие тогда, когда изучаемые организмы не унитарные, а модулярные.

Строение унитарных организмов в очень значительной степени предопределено генетически. Идеальный пример унитарного организма человек. В возрасте шести недель плод имеет черты внешнего строения, которые сохраняются до самой смерти.

Примерно до 18 лет продолжается рост, и размеры тела изменяются существенно, а строение – довольно незначительно, и лишь в связи с половым созреванием, затем наступает репродуктивный период, потом старение и смерть, т.е.

череда событий вполне предсказуема.

У модулярных организмов из зиготы развивается некая единица строения (модуль), который затем порождает все новые и новые модули, напоминающие первые, в итоге образуется неподвижный разветвленный организм.

Развитие модулярных организмов не предопределено генетической программой и сильно зависит от их взаимодействий с окружающей средой.

Растения в основном модулярны, модулярны и некоторые группы животных: губки, гидроиды, кораллы, мшанки, а также многие простейшие и грибы.

Âпрошлом многие экологические обобщения были сделаны на унитарных животных. Но на обширных пространствах воды и суши преобладают модулярные организмы.

Основной конструктивный модуль высшего растения – лист вместе с пазушной почкой и междоузлием. Рост растений и состоит в накоплении таких модулей.

На определенном этапе развития могут образовываться видоизмененные модули для размножения (цветки), они не производят новых модулей, а порождают новые зиготы.

Программа развития модулярного организма сводится к относительному увеличению числа модулей, выполняющих различные физиологические функции.

По характеру внешнего строения все растения делятся на два типа. Растения первого типа тянутся вверх и выносят свои модули выше модулей соседей. Растения второго типа разбрасывают свои модули по поверхности субстрата или в его толще. Многие из них образуют корневые системы.

Образования, соединяющие отдельные части таких растений, отмирают и образуются физиологически обособленные модули. Такие модули, наделенные способностью к самостоятельному существованию, называются «раметами». Потомство одной и той же зиготы называется клоном.

Многие клональные растения способны распадаться на модули (раметы).

Отличительная особенность деревьев и кустарников в том, что соединения модулей не сгнивают, а одревесневают и превращают растение в многолетник. Большая часть дерева – нечто вроде кладбища, лишь под самой корой располагается тонкий слой живых клеток. Деревья растут в основном вверх,

àих форма определяется способом взаимного расположения модулей.

Âстроении организмов обнаруживаются два или более уровней модулей: листья с пазушными почками бывают собраны в группы, которые в свою очередь многократно повторяются. Например, рост земляничных растений состоит: 1) в приумножении листьев в одной розетке; 2) в формировании новых розеток на усах из пазушных почек розеточных листьев. У деревьев можно выделить несколько уровней модуляр-

ности: лист с пазушной почкой – целый побег – система побегов. Общее телосложение модулярных организмов определяется углами между смежными модулями и длиной соединяющих их стеблей или междоузлий.

Исходя из вышесказанного, возникает вопрос, что же такое особь? Число унитарных организмов, например, кроликов, можно сосчитать по ушам или лапам, разделив потом их число на 2 или 4. Оно будет равно числу выживших зигот. Но на что поделить число листьев у высшего растения, вай у папоротника, зооидов у асцидий и т.д. Такого делителя не существует.

Таким образом, численность выживших зигот у модулярных организмов о величине популяции может дать лишь частичное, а то и ошибочное представление. Ввиду этого С.Кейс и Дж.Харпер в 1974 году предложили термин «генет» – генетический индивидуум, т.е. все то, что образовалось из одной зиготы.

Составными частями генета могут быть раметы, побеги, корневые отпрыски, зооиды и т.д.

Следовательно, как ни важно знать численность генетов, т.е. индивидуумов, при изучении модулярных организмов необходимо знать и численность модулей, т.к. последние часто более важны. Например, запас травы на пастбище определяется не числом генетов, а числом модулей.

Поэтому не столь важно знать число родившихся и погибших генетов, сколь нужно знать число отрожденных и отмерших модулей. По этой при- чине модулярные организмы следует изучать как бы на двух взаимодействующих уровнях.

Такие важнейшие жизненные процессы, как рождение, старение и смерть у модулярных организмов происходят не только на уровне всего организма, но и на уровне отдельного модуля. В действительности у модулярных организмов в целом «запрограммированного» старения часто не бывает.

Клональные растения, избавляясь от старых тканей, пребывают в состоянии вечной «соматической юности». Смерть наступает чаще всего не от «запрограммированного» старения, а от слишком больших размеров или от болезней. Пример модулярного старения – ежегодное отмирание листьев, старение и отмирание корней, почек или цветков.

Модулярное животное (гидроиды, кораллы) порой в одно и то же время состоят из частей, находящихся на разных стадиях

Источник: https://studfile.net/preview/3643179/page:3/

Scicenter1
Добавить комментарий