МОДЕЛИ РАСПРЕДЕЛЕНИЯ ВИДОВОГО ОБИЛИЯ: Разнообразие обычно анализи­руется с учетом четырех основных

Биоразнообразие 1 ч.. I. Биологическое разнообразие и методы его оценки Введение

МОДЕЛИ РАСПРЕДЕЛЕНИЯ ВИДОВОГО ОБИЛИЯ: Разнообразие обычно анализи­руется с учетом четырех основных

Подборка по базе: Занятие 8 (4 часа) Воспитание в семье. Методы воспитания.doc, Математические методы.Нелинейное программирован….doc, Курсовая 4 курс методы оценки рентабельности и пути ее повышения, КР основные направления и методы оценивания применяемые в оценке, Формы и методы реаблитации.

pptx, ГДП методы исследования .pptx, Контрольная работа Финансовые методы регулирования экономики..rt, Цели и методы финансового планирования.rtf, сравнительные методы лечения экзем у собак в зависимости от возр, Тыртышников методы численного анализа.pdf.

Разнообразие обычно анализируется с учетом четырех основных теоретических моделей:

  1.  геометрическое;
  2.  логарифмическое;
  3.  логарифмическинормальное (лог-нормальное);
  4. распределение, описываемое моделью «разломанного стержня» Макартура.

Если изобразить каждую из моделей в виде графиков с осями ранг/обилие, можно увидеть переход от геометрического ряда к модели «разломанного стержня».

При геометрическом распределении доминируют немногие виды при очень низкой численности большинства, при логарифмическом и лог-нормальном распределении виды со средним обилием становятся все более и более обычными; в распределении, описываемом моделью «разломанного стержня», обилия видов распределены с максимально возможной в природе равномерностью. Каждой из моделей соответствует характерная форма кривой на графике с осями ранг/обилие (рис. 5.3.1).

Рис. 5.3.1. Кривые доминирования – разнообразия разных моделей видового обилия по Мэгарран (1992): 1 – геометрическое распределение; 2 – логарифмическое; 3 – лог-нормальное распределение; 4 – модель «разломанного стержня»

Геометрическое распределение выражается прямой линией с крутым наклоном. Логарифмическое распределение также имеет крутой наклон, но это не прямая линия, а кривая.

Модель «разломанного стержня» имеет более пологий график.

Лог-нормальное распределение описывается S-образной кривой, которая располагается на графике между логарифмическим распределением и моделью «разломанного стержня».

Рассмотрим ситуацию, когда вид-доминант захватывает часть k некоего ограниченного ресурса, второй по обилию вид захватывает такую же долю k остатка этого ресурса, третий по обилию – k от остатка и т. д., пока ресурс не будет разделен между всеми S видами. Если это условие выполнено, и если обилия видов (выраженные, например, их биомассой или числом особей) пропорциональны используемой доле ресурса, распределение этих обилий будет описываться геометрическим рядом (или гипотезой преимущественного захвата ниши).Пример такого ряда: наиболее обильный вид в два раза многочисленнее следующего за ним по обилию, а этот последний в свою очередь вдвое многочисленнее третьего и т. д. На графике ранг/обилие такое сообщество будет представлено прямой линией. Можно предположить, что в этом случае доминирующий вид занимает половину доступного пространства ниш, второй – половину оставшегося пространства (1/4 исходного) и т. д. Таким образом, каждый вид занимает прежде всего свободную нишу, не перекрывающуюся с другими.

Модель геометрического распределения была предложена Мотомурой. Модель имеет два параметра: ni – численность самого обильного вида и k – константу геометрической прогрессии. В геометрическом ряду обилия видов от наибольшего к наименьшему выражаются формулой, разработанной Мэйем и Мотомурой:

,

где ni – число особей i-го вида, N – общее число особей, – константа, при которой .

Распределение обилий видов по типу геометрического обнаруживается преимущественно в бедных видами местообитаниях или в сообществах на очень ранних стадиях сукцессии.

Такое распределение характерно для некоторых растительных сообществ в суровых условиях окружающей среды (например, сообщество растений субальпийского пояса).

Модель логарифмического распределения известного английского математика Фишера была первой попыткой описать отношение между числом видов и числом особей этих видов.

Особенным успехом эта модель пользовалась в энтомологических исследованиях и была впервые применена Фишером как теоретическая модель для описания распределения видов в коллекциях. Этой модели и статистике разнообразия было посвящено подробное исследование Л. Р. Тейлора с соавторами [Taylor et al., 1976].Распределение частот видов для логарифмического распределения описывается следующей последовательностью:

,

где х – число видов, представленных одной особью, х2/2 – число видов, представленных двумя особями и т. д.

Логарифмическая модель имеет два параметра  и x. Это означает, что для выборки объемом N и числом видов S существует только одно возможное распределение частот видов по их относительному обилию, так как и , и х являются функциями N и S.

Чем больше выборка, извлеченная из данного сообщества, тем больше значение х и тем меньше доля особей, относящихся к видам, представленных одной особью в выборке.

Два параметра S и N (общее число особей) связаны между собой зависимостью, где  – индекс разнообразия, который можно получить из уравнения:

,

где сумма всех особей N, принадлежащих S видам:

.

Моделью логарифмического распределения, характеризующейся малым числом обильных видов и большой долей «редких», с наибольшей вероятностью можно описать такие сообщества, структура которых определяется одним или немногими экологическими факторами.

Как показали исследования, проведенные Мэгарран в Ирландии [1992], такому ряду соответствует распределение обилий видов растений наземного яруса в хвойных культурах в условиях низкой освещенности.
Для большинства сообществ характерно лог-нормальное распределение обилий видов, но обычно эта модель указывает на большое, зрелое и разнообразное сообщество.

Такое распределение характерно для систем, когда величина некоей переменной определяется большим числом факторов.

Эта модель впервые была применена к распределению обилий видов Престоном. На разнообразном эмпирическом материале он показал, что частоты видов в больших выборках распределены в соответствии с логарифмическинормальным законом.

По разработанной им методике в частотные классы группируются виды с числом особей, заключенным в промежутках, которые ограничены числами геометрической прогрессии. Престон нанес на ось обилия видов в масштабе логарифма по основанию 2 (log 2) и назвал получившиеся классы октавами. Но для описания модели можно использовать любое основание логарифма.

На графике распределения частот видов по полученным таким способом классам численности соответствуют известной кривой нормального распределения, усеченной слева, в области частот редких видов.

Распределение обычно записывается в форме:

, где

SR– теоретическое число видов в октаве, расположенной в R октавах от модальной октавы; Smo – число видов в модальной октаве; – стандартное отклонение теоретической лог-нормальной кривой, выраженное в числе октав.

Рис. 5.3.2. Лог-нормальное распределение

Лог-нормальное распределение описывается симметричной «нормальной», т. е. колоколообразной кривой (рис. 5.3.2.). Однако если данные, которым она соответствует, получены из ограниченной выборки, то левая часть кривой (т. е. редкие, неучтенные виды) будет выражена нечетко.

Престон назвал такую точку усечения кривой слева «линией занавеса». «Линия занавеса» может сдвигаться влево при увеличении объема выборки. На рисунке она указана стрелкой. Для большинства выборок выражена только часть кривой справа от моды.

Только при огромном количестве данных, собранных на обширных биогеографических территориях, прослеживается полная кривая. S-образная кривая указывает на сложный характер дифференциации и перекрывания ниш.

Большинство видов в природных открытых экосистемах существует в условиях соревнования за ресурсы, а не на условиях прямой конкуренции; множество адаптаций дает возможность делить ниши без конкурентного исключения из местообитания. Эта модель наиболее вероятна для ненарушенных сообществ.

Эту модель иногда называют гипотезой случайной границы ниши. В 1975 году Макартур предложил три гипотетических распределения особей по видам в сообществе, основанных на различных типах взаимоотношений ниш разных видов:

1) ниши видов в сообществе не перекрываются, но тесно прилегают друг к другу;

2) ниши видов частично перекрываются;3) ниши видов не перекрываются и разделены промежутками.

Наиболее подробно Макартур исследовал свойства первого гипотетического сообщества. Он сравнил разделение пространства ниши в пределах сообщества со случайным и одновременным разламыванием стержня на S кусков. S видов разделяют среду случайно между собой так, что они занимают неперекрывающиеся ниши.

При этом число особей каждого вида пропорционально размеру (ширине) ниши. Эта модель рассматривает только один ресурс. Она отражает более равномерное его разделение, чем лог-нормальная модель, логарифмическая и геометрическая модели.

Модель «разломанного стержня» характеризуется только одним параметром S (числом видов) и сильно зависит от объема выборки.

Число особей в i-ом по порядку обилия среди S видов (Ni) получают по формуле:

,

где N – общее число особей, а S – общее число видов.

Эту модель можно выразить также в величинах стандартного распределения обилий видов согласно выражению, описанному Мэем:

.

Модель Макартура предполагает, что пространство ниш поделено на случайные, соприкасающиеся, но неперекрывающиеся участки.

Такое распределение характерно для сообществ с интенсивной межвидовой конкуренцией, территориальным поведением, например, для лесных птиц, характер распределения которых соответствует представлению о неперекрывающихся случайных нишах.

Лучше всего использовать модель «разломанного стержня» для доказательства большей выравненности обилий видов в определенном сообществе.

Описанные выше модели распределения видового обилия не могут охватить всего разнообразия реальных распределений, поэтому многими исследователями предпринимались попытки подобрать к эмпирическим сообществам другие теоретические модели.

А. П. Левич, В. Д. Федоров [1980] и др. гиперболической моделью апроксимировали ранговые распределения видов в планктонных пробах. А. П. Левич предложил также смешанную дзета-модель, представляющую собой обобщение геометрического распределения и гиперболической модели.

Для описания ранговых распределений видов в геоботанических выборках Ламонтом была применена экспоненциальная модель. В. Д. Федоров [1978] предложил модель «экспоненциально разломанного стержня», которая основана на введении в модель Макaртура нового параметра – плотности вероятности обилий видов, которая в исходной модели предполагается равномерной.

Согласно новой модели, на степень перекрывания ниш видов, а соответственно и на соотношение их обилий, влияет плотность организмов.

1   …   13   14   15   16   17   18   19   20   …   24

Источник: https://topuch.ru/i-biologicheskoe-raznoobrazie-i-metodi-ego-ocenki-vvedenie/index17.html

Модели распределения видового обилия

МОДЕЛИ РАСПРЕДЕЛЕНИЯ ВИДОВОГО ОБИЛИЯ: Разнообразие обычно анализи­руется с учетом четырех основных

Разнообразие обычно анализируется с учетом четырех основных теоретических моделей:

геометрическое;

логарифмическое;

логарифмическинормальное (лог-нормальное);

распределение, описываемое моделью «разломанного стержня» Макартура.

Если изобразить каждую из моделей в виде графиков с осями ранг/обилие, можно увидеть переход от геометрического ряда к модели «разломанного стержня».

При геометрическом распределении доминируют немногие виды при очень низкой численности большинства, при логарифмическом и лог-нормальном распределении виды со средним обилием становятся все более и более обычными; в распределении, описываемом моделью «разломанного стержня», обилия видов распределены с максимально возможной в природе равномерностью. Каждой из моделей соответствует характерная форма кривой на графике с осями ранг/обилие (рис. 5.3.1).

Рис. 5.3.1. Кривые доминирования – разнообразия разных моделей видового обилия по Мэгарран (1992): 1 – геометрическое распределение; 2 – логарифмическое; 3 – лог-нормальное распределение; 4 – модель «разломанного стержня»

Геометрическое распределение выражается прямой линией с крутым наклоном. Логарифмическое распределение также имеет крутой наклон, но это не прямая линия, а кривая.

Модель «разломанного стержня» имеет более пологий график.

Лог-нормальное распределение описывается S-образной кривой, которая располагается на графике между логарифмическим распределением и моделью «разломанного стержня».

5.3.1. Геометрический ряд

Рассмотрим ситуацию, когда вид-доминант захватывает часть k некоего ограниченного ресурса, второй по обилию вид захватывает такую же долю k остатка этого ресурса, третий по обилию – k от остатка и т. д.

, пока ресурс не будет разделен между всеми S видами.

Если это условие выполнено, и если обилия видов (выраженные, например, их биомассой или числом особей) пропорциональны используемой доле ресурса, распределение этих обилий будет описываться геометрическим рядом (или гипотезой преимущественного захвата ниши).

Пример такого ряда: наиболее обильный вид в два раза многочисленнее следующего за ним по обилию, а этот последний в свою очередь вдвое многочисленнее третьего и т. д. На графике ранг/обилие такое сообщество будет представлено прямой линией.

Можно предположить, что в этом случае доминирующий вид занимает половину доступного пространства ниш, второй – половину оставшегося пространства (1/4 исходного) и т. д.

Таким образом, каждый вид занимает прежде всего свободную нишу, не перекрывающуюся с другими.

Модель геометрического распределения была предложена Мотомурой. Модель имеет два параметра: ni – численность самого обильного вида и k – константу геометрической прогрессии. В геометрическом ряду обилия видов от наибольшего к наименьшему выражаются формулой, разработанной Мэйем и Мотомурой:

,

где ni – число особей i-го вида, N – общее число особей, – константа, при которой .

Распределение обилий видов по типу геометрического обнаруживается преимущественно в бедных видами местообитаниях или в сообществах на очень ранних стадиях сукцессии. Такое распределение характерно для некоторых растительных сообществ в суровых условиях окружающей среды (например, сообщество растений субальпийского пояса).

5.3.2. Логарифмическое распределение

Модель логарифмического распределения известного английского математика Фишера была первой попыткой описать отношение между числом видов и числом особей этих видов.

Особенным успехом эта модель пользовалась в энтомологических исследованиях и была впервые применена Фишером как теоретическая модель для описания распределения видов в коллекциях.

Этой модели и статистике разнообразия было посвящено подробное исследование Л. Р. Тейлора с соавторами [Taylor et al., 1976].

Распределение частот видов для логарифмического распределения описывается следующей последовательностью:

,

где aх – число видов, представленных одной особью, aх2/2 – число видов, представленных двумя особями и т. д.

Логарифмическая модель имеет два параметра a и x. Это означает, что для выборки объемом N и числом видов S существует только одно возможное распределение частот видов по их относительному обилию, так как и a, и х являются функциями N и S.

Чем больше выборка, извлеченная из данного сообщества, тем больше значение х и тем меньше доля особей, относящихся к видам, представленных одной особью в выборке.

Два параметра S и N (общее число особей) связаны между собой зависимостью , где a – индекс разнообразия, который можно получить из уравнения:

,

где сумма всех особей N, принадлежащих S видам:

.

Моделью логарифмического распределения, характеризующейся малым числом обильных видов и большой долей «редких», с наибольшей вероятностью можно описать такие сообщества, структура которых определяется одним или немногими экологическими факторами.

Как показали исследования, проведенные Мэгарран в Ирландии [1992], такому ряду соответствует распределение обилий видов растений наземного яруса в хвойных культурах в условиях низкой освещенности.

Предыдущая17181920212223242526272829303132Следующая

Дата добавления: 2015-04-11; просмотров: 1502; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/3-12640.html

Scicenter1
Добавить комментарий